Le résultat principal dans le travail présenté est le calcul explicite de la série génératrice des opérateurs de Hecke dans l'algèbre de Hecke locale pour les groupes symplectiques de genre 3 et 4. L'algorithme est basé sur l'isomorphisme de Satake, qui permet de réaliser toutes les opérations dans l'algèbre des polynômes à plusieurs variables. C'est la première fois que cette expression est calculée pour le genre 4. Pour obtenir le résultat principal, une méthode de calcul symbolique a été développée. Cette approche algorithmique s'applique à d'autres types de séries de Hecke. En particulier, nous formulons et prouvons un analogue du Lemme de Rankin pour le genre 2. Nous avons aussi calculé les séries génératrices des carrés symétriques et des cubes symétriques.<br /><br />Se basant sur nos résultats nous formulons une conjecture de modularité pour les convolutions des fonctions L spineurs associées aux formes modulaires de Siegel. Nous considérons d'autres conjectures importantes liées aux formes modulaires de Siegel et à leurs fonctions L. Nous utilisons ces constructions pour calculer les facteurs algébriques rationnels aux valeurs critiques de la fonction L spineur attachée à F12 de Miyawaki. A notre connaissance c'est le premier exemple d'une fonction L-spineur de forme parabolique de Siegel de degré 3, dont certaines valeurs spéciales peuvent être calculées explicitement.<br /><br />Finalement, nous appliquons la théorie des algèbres de Hecke pour construire des cryptosystèmes algébriques sur ensembles finis de classes à gauches dans l'algèbre de Hecke. Nous utilisons une relation entre les classes à gauches et les points sur certains variétés algébriques projectives.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00349767 |
Date | 27 November 2008 |
Creators | Vankov, Kirill |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0017 seconds