Return to search

Filtrage, réduction de dimension, classification et segmentation morphologique hyperspectrale

Le traitement d'images hyperspectrales est la généralisation de l'analyse des images couleurs, à trois composantes rouge, vert et bleu, aux images multivariées à plusieurs dizaines ou plusieurs centaines de composantes. Dans un sens général, les images hyperspectrales ne sont pas uniquement acquises dans le domaine des longueurs d'ondes mais correspondent à une description d'un pixel par un ensemble de valeurs : c'est à dire un vecteur. Chacune des composantes d'une image hyperspectrale constitue un canal spectral, et le vecteur associé à chaque pixel est appelé spectre. Pour valider la généralité de nos méthodes de traitement, nous les avons appliquées à plusieurs types d'imagerie correspondant aux images hyperspectrales les plus variées : des photos avec quelques dizaines de composantes acquises dans le domaine des longueurs d'ondes, des images satellites de télédétection, des séries temporelles d'imagerie par résonance dynamique (DCE-MRI) et des séries temporelles d'imagerie thermique. Durant cette thèse, nous avons développé une chaîne complète de segmentation automatique des images hyperspectrales par des techniques morphologiques. Pour ce faire, nous avons mis au point une méthode efficace de débruitage spectral, par Analyse Factorielle des Correspondances (AFC), qui permet de conserver les contours spatiaux des objets, ce qui est très utile pour la segmentation morphologique. Puis nous avons fait de la réduction de dimension, par des méthodes d'analyse de données ou par modélisation des spectres, afin d'obtenir un autre représentation de l'image avec un nombre restreint de canaux. A partir de cette image de plus faible dimension, nous avons effectué une classification (supervisée ou non) pour grouper les pixels en classes spectralement homogènes. Cependant, les classes obtenues n'étant pas homogènes spatialement, i.e. connexes, une étape de segmentation s'est donc avérée nécessaire. Nous avons démontré que la méthode récente de la Ligne de Partage des Eaux Probabiliste était particulièrement adaptée à la segmentation des images hyperspectrales. Elle utilise différentes réalisations de marqueurs aléatoires, conditionnés par la classification spectrale, pour obtenir des réalisations de contours par Ligne de Partage des Eaux (LPE). Ces réalisations de contours permettent d'estimer une fonction de densité de probabilité de contours (pdf) qui est très facile à segmenter par une LPE classique. En définitive, la LPE probabiliste est conditionnée par la classification spectrale et produit donc des segmentations spatio-spectrales dont les contours sont très lisses. Cette chaîne de traitement à été mise en œuvre sur des séquences d'imagerie par résonance magnétique dynamique (DCE-MRI) et a permis d'établir une méthode automatique d'aide au diagnostic pour la détection de tumeurs cancéreuses. En outre, d'autres techniques de segmentation spatio-spectrales ont été développées pour les images hyperspectrales : les régions η-bornées et les boules µ-géodésiques. Grâce à l'introduction d'information régionale, elles améliorent les segmentations par zones quasi-plates qui n'utilisent quant à elles que de l'information locale. Enfin, nous avons mis au point une méthode très efficace de calcul de toutes les paires de distances géodésiques d'une image, puisqu'elle permet de réduire jusqu'à 50 % le nombre d'opérations par rapport à une approche naïve et jusqu'à 30 % par rapport aux autres méthodes. Le calcul efficace de ce tableau de distances offre des perspectives très prometteuses pour la réduction de dimension spatio-spectrale.

Identiferoai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00004473
Date22 September 2008
CreatorsNoyel, Guillaume
PublisherÉcole Nationale Supérieure des Mines de Paris
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0017 seconds