As more IoT devices enter the market it becomes increasingly important to develop reliable and adaptive ways of dealing with the data they generate. These must address data quality and reliability. Such solutions could benefit both the device producers and their customers who, as a result, could receive faster and better customer support services. Thus, this project's goal is twofold. First, it is to identify faulty data points generated by such devices. Second, it is to evaluate whether the knowledge gained from available/known sensors and appliances is transferable to other sensors on similar devices. This would make it possible to evaluate the behaviour of new appliances as soon as they are first switched on, rather than after sufficient data from them has been collected. This project uses time series data from three appliances: washing machine, washer&dryer and refrigerator. For these, two solutions are developed and tested: one for categorical and another for numerical variables. Categorical variables are analysed using the Average Value Frequency and the pure frequency of state-transition methods. Due to the limited number of possible states, the pure frequency proves to be the better solution, and the knowledge gained is transferred from the source device to the target one, with moderate success. Numerical variables are analysed using a One-class Support Vector Machine pipeline, with very promising results. Further, learning and forgetting mechanisms are developed to allow for the pipelines to adapt to changes in appliance patterns of behaviour. This includes a decay function for the numerical variables solution. Interestingly, the different weights for the source and target have little to no impact on the quality of the classification. / Nya IoT-enheter träder in på marknaden så det blir allt viktigare att utveckla tillförlitliga och anpassningsbara sätt att hantera de data de genererar. Dessa bör hantera datakvalitet och tillförlitlig- het. Sådana lösningar kan gynna båda tillverkarna av apparater och deras kunder som som ett resultat kan dra nytta av snabbare och bättre kundsupport / tjänster. Således har detta projekt två mål. Det första är att identifiera felaktiga datapunkter som genereras av sådana enheter. För det andra är det att utvärdera om kunskapen från tillgängliga / kända sensorer och apparater kan överföras till andra sensorer på liknande enheter. Detta skulle göra det möjligt att utvärdera beteendet hos nya apparater så snart de slås på första gången, snarare än efter att tillräcklig information från dem har samlats in. Detta projekt använder tidsseriedata från tre apparater: tvättmaskin, tvättmaskin och torktumlare och kylskåp. För dessa utvecklas och testas två lösningar: en för kategoriska variabler och en annan för numeriska variabler. De kategoriska variablerna analyseras med två metoder: Average Value Frequency och den rena frekvensen för tillståndsövergång. På grund av det begränsade antalet möjliga tillstånd visar sig den rena frekvensen vara den bättre lösningen, och kunskapen som erhålls överförs från källanordningen till målet, med måttlig framgång. De numeriska variablerna analyseras med hjälp av en One-class Support Vector Machine-pipeline, med mycket lovande resultat. Vidare utvecklas inlärnings- och glömningsmekanismer för att möjliggöra för rörledningarna att anpassa sig till förändringar i apparatens beteendemönster. Detta inkluderar en sönderfallningsfunktion för den numeriska variabellösningen. Intressant är att de olika vikterna för källan och målet har liten eller ingen inverkan på kvaliteten på klassificeringen.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-426257 |
Date | January 2020 |
Creators | Negus, Andra Stefania |
Publisher | Uppsala universitet, Institutionen för informationsteknologi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | UPTEC IT, 1401-5749 ; 20045 |
Page generated in 0.0027 seconds