O principal objetivo do estudo foi utilizar informações de ocorrência do Traumatismo Crânio Encefálico (TCE) que possam inferir/gerar descobertas associadas ao risco de gravidade do paciente, bem como auxiliar na tomada de decisão médica ao definir o melhor prognóstico, indicando quais as possíveis medidas que podem ser escolhidas para a gravidade na lesão sofrida pela vítima. Inicialmente, foram analisadas as estatísticas descritivas dos dados dos pacientes de TCE de um hospital do interior de São Paulo. Participaram desse estudo 50 pacientes. Os resultados mostraram que a maior frequência do trauma é por acidentes de trânsito (62%), seguidos de acidentes por queda (24%). Traumas em pacientes do sexo masculino (88%) são muito mais frequentes do que em pacientes do sexo feminino. Para modelagem, transformou-se a variável resposta \"Abbreviated Injury Scale (AIS)\" em dicotômica, considerando 0 (zero) aos pacientes fora de risco e 1 (um) aos que apresentaram algum tipo de risco. Em seguida, técnicas de aprendizado estatístico foram utilizadas de modo a comparar o desempenho dos classificadores Regressão Logística sendo um caso do Generalized Linear Model (GLM), Random Forest (RF), Support Vector Machine (SVM) e redes probabilísticas Naïve Bayes (NB). O modelo com melhor desempenho (RF) combinou os índices Accuracy (ACC) , Area Under ROC Curve (AUC) , Sensitivity (SEN), Specificity (SPE) e Matthews Correlation Coefficient (MCC), que apresentaram os resultados mais favoráveis no quesito de apoio no auxílio da tomada de decisão médica, possibilitando escolher o estudo clínico mais adequado das vítimas traumatizadas ao considerar o risco de vida do indivíduo. Conforme o modelo selecionado foi possível gerar um ranking para estimar a probabilidade de risco de vida do paciente. Em seguida foi realizado uma comparação de desempenho entre o modelo RF (novo classificador) e os índices Revisited Trauma Score (RTS), Injury Severity Score (ISS) , Índice de Barthel (IB) referente à classificação de risco dos pacientes. / The main objective of this study was to consider the information related to the occurrence of traumatic brain injury (TBI) that can infer new results associated with the patients risk of severity as well as assisting in the medical decision in order to find the best prognosis; this can lead to indicate possible measures that can be chosen for severity in the injury suffered by the victim. Initially, we have presented descriptive statistics from the patients with TBI from a hospital located in the heartland of São Paulo. Fifty patients were recruited for this study. Descriptive analyzes showed that the highest frequency of trauma is due to traffic accidents (62 %) followed by crashes per accident (24 %). The causes related to trauma occur much more often in male patients (88 %) than in female patients. To order model, the response variable Abbreviated Injury Scale (AIS) was considered as dichotomous, where 0 (zero) was to out-of-risk patients and 1 (one) to those who presented some type of risk. Further, statistical learning techniques were used in order to compare the performance of the Logistic Regression as a Generalized Linear Model (GLM), Random Forest (RF), Support Vector Machine (SVM) and Naive Bayes (NB) model. The best performing (RF) model combined the Accuracy (ACC) , Area Under ROC Curve (AUC) , Sensitivity (SEN), Specificity (SPE) e Matthews Correlation Coefficient (MCC), which presented the most favorable results in terms of support in medical decision, making it possible to choose the most appropriate clinical study of traumatized victims based on the individual life risk. According to the selected model it was possible to generate a rank to estimate the probability of life risk of the patient. Then a performance comparison was performed between the RF model (proposed classifier) and the Revisited Trauma Score (RTS), Injury Severity Score (ISS), Barthel index (IB) referring to the risk classification of patients.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-25032019-141951 |
Date | 22 November 2018 |
Creators | Garcia, Marcelo |
Contributors | Louzada Neto, Francisco |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.002 seconds