Orientador: Roberto de Alencar Lotufo / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-26T03:01:45Z (GMT). No. of bitstreams: 1
Nogueira_RodrigoFrassetto_M.pdf: 3122263 bytes, checksum: e6333eb55b8b4830e318721882159cd1 (MD5)
Previous issue date: 2014 / Resumo: Com o uso crescente de sistemas de autenticação por biometria nos últimos anos, a detecção de impressões digitais falsas tem se tornado cada vez mais importante. Neste trabalho, nós implementamos e comparamos várias técnicas baseadas em software para detecção de vivacidade de impressões digitais. Utilizamos como extratores de características as redes convolucionais, que foram usadas pela primeira vez nesta área, e Local Binary Patterns (LBP). As técnicas foram usadas em conjunto com redução de dimensionalidade através da Análise de Componentes Principais (PCA) e um classificador Support Vector Machine (SVM). O aumento artificial de dados foi usado de forma bem sucedida para melhorar o desempenho do classificador. Testamos uma variedade de operações de pré-processamento, tais como filtragem em frequência, equalização de contraste e filtragem da região de interesse. Graças aos computadores de alto desempenho disponíveis como serviços em nuvem, foi possível realizar uma busca extensa e automática para encontrar a melhor combinação de operações de pré-processamento, arquiteturas e hiper-parâmetros. Os experimentos foram realizados nos conjuntos de dados usados nas competições Liveness Detection nos anos de 2009, 2011 e 2013, que juntos somam quase 50.000 imagens de impressões digitais falsas e verdadeiras. Nosso melhor método atinge uma taxa média de amostras classificadas corretamente de 95,2%, o que representa uma melhora de 59% na taxa de erro quando comparado com os melhores resultados publicados anteriormente / Abstract: With the growing use of biometric authentication systems in the past years, spoof fingerprint detection has become increasingly important. In this work, we implemented and compared various techniques for software-based fingerprint liveness detection. We use as feature extractors Convolutional Networks with random weights, which are applied for the first time for this task, and Local Binary Patterns. The techniques were used in conjunction with dimensionality reduction through Principal Component Analysis (PCA) and a Support Vector Machine (SVM) classifier. Dataset Augmentation was successfully used to increase classifier¿s performance. We tested a variety of preprocessing operations such as frequency filtering, contrast equalization, and region of interest filtering. An automatic and extensive search for the best combination of preprocessing operations, architectures and hyper-parameters was made, thanks to the fast computers available as cloud services. The experiments were made on the datasets used in The Liveness Detection Competition of years 2009, 2011 and 2013 that comprise almost 50,000 real and fake fingerprints¿ images. Our best method achieves an overall rate of 95.2% of correctly classified samples - an improvement of 59% in test error when compared with the best previously published results / Mestrado / Energia Eletrica / Mestre em Engenharia Elétrica
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/259824 |
Date | 26 August 2018 |
Creators | Nogueira, Rodrigo Frassetto, 1986- |
Contributors | UNIVERSIDADE ESTADUAL DE CAMPINAS, Lotufo, Roberto de Alencar, 1955-, Rocha, Anderson de Rezende, Zuben, Fernando Von |
Publisher | [s.n.], Universidade Estadual de Campinas. Faculdade de Engenharia Elétrica e de Computação, Programa de Pós-Graduação em Engenharia Elétrica |
Source Sets | IBICT Brazilian ETDs |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | 51 f. : il., application/pdf |
Source | reponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds