Return to search

Números p-ádicos

Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-29T16:07:28Z
No. of bitstreams: 1
arquivototal.pdf: 945033 bytes, checksum: cab32f76c5a55b0c6400063ed6b40ff6 (MD5) / Approved for entry into archive by Fernando Souza (fernandoafsou@gmail.com) on 2017-08-29T16:11:36Z (GMT) No. of bitstreams: 1
arquivototal.pdf: 945033 bytes, checksum: cab32f76c5a55b0c6400063ed6b40ff6 (MD5) / Made available in DSpace on 2017-08-29T16:11:36Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 945033 bytes, checksum: cab32f76c5a55b0c6400063ed6b40ff6 (MD5)
Previous issue date: 2015-08-25 / We introduce and de ne the p-adics integer numbers as a result of a search for solutions,
for a congruences system that derives from a variable polynomial equation
with rational coe cients. We evidence that the p-adic integers set is strictly larger
than the integers. We present a criterion so that a rational that holds a correspondent
in a p-adic integers set. We search for the possibility to represent irrational and
complex numbers as p-adics integers. Algebraically, the p-adic integers set will be
an integral domain and, from this, we search for the construction of p-adic integers
quotient eld so that shall form the p-adic rationals eld, from a purely algebraically
point of view. In the second part, we will expose the bases for the construction of
a norm that's di erent from the usual, establishing so a new metric in the rational
numbers set and the construction of a non-archimedian eld. / Apresentamos e de nimos os números inteiros p-ádicos como o resultado de uma
busca por soluções, para um sistema de congruências, que parte de uma equação
polinomial de uma variável, com coe cientes racionais. Constatamos que o conjunto
dos inteiros p-ádicos é estritamente maior que os inteiros. Mostramos um critério
para que um racional possua um correspondente num conjunto de inteiros p-ádicos.
Buscamos a possibilidade de representarmos números irracionais e números complexos
como inteiros p-ádicos. Algebricamente, o conjunto dos inteiros p-ádicos será
um domínio de integridade e, partindo disto, buscamos a construção de um corpo de
frações dos inteiros p-ádicos, que formarão, assim, o corpo dos racionais p-ádicos, de
um ponto de vista puramente algébrico. Na segunda parte, vamos expor os fundamentos
para a construção de uma norma diferente da habitual, estabelecendo assim
uma nova métrica, no conjunto dos números racionais, e a construção de um corpo
não-arquimediano.

Identiferoai:union.ndltd.org:IBICT/oai:tede.biblioteca.ufpb.br:tede/9337
Date25 August 2015
CreatorsGusmão, Ítalo Moraes de Melo
ContributorsRibeiro, Bruno Henrique Carvalho
PublisherUniversidade Federal da Paraíba, Mestrado Profissional em Matemática, UFPB, Brasil, Matemática
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFPB, instname:Universidade Federal da Paraíba, instacron:UFPB
Rightsinfo:eu-repo/semantics/openAccess
Relation-7971561403159605022, 600, 600, 600, -78633126427147401, 8398970785179857790

Page generated in 0.0022 seconds