Return to search

Insertion d’une mutation protectrice pour la maladie d’Alzheimer dans le gène de la protéine précurseur de l’amyloïde via le système CRISPR/Cas9

La maladie d’Alzheimer est la plus commune des formes de démence qui touche presque cinquante millions de personnes dans le monde. Les symptômes les plus fréquents sont la perte de mémoire, la difficulté à planifier des tâches et des confusions temporelles et spatiales. Il n’existe à ce jour aucun traitement pour cette maladie. La protéine précurseur de l’amyloïde (APP) est habituellement coupée par l’enzyme alpha-sécrétase, cependant une coupure anormale par la bêta-sécrétase conduit à la formation de peptides bêta-amyloïdes, qui forment des agrégats s’accumulant sous forme de plaques dans le cerveau des patients Alzheimer. De nombreuses mutations du gène APP sont à l’origine de changements dans la séquence d’acides aminés de la protéine, responsable d’une accumulation accrue de plaques. Ces mutations sont appelées formes familiales de la maladie d’Alzheimer ou FAD (Familial Alzheimer’s disease). Cependant il a été découvert qu’une forme de FAD d’APP (mutation islandaise A673T) présente dans une population d’Europe nordique, différant d’une seule paire de bases du gène normal dans l’exon 16, modifiant une alanine de la protéine en thréonine qui réduit de 40% sa coupure par la bêta-sécrétase. La découverte de la technologie CRISPR/Cas9 ouvre de nouvelles perspectives pour le développement de traitements préventifs ou curatifs des maladies génétiques et dans notre cas Alzheimer. L’endonucléase Cas9 peut couper l’ADN double brin du génome en étant guidée par un ARNg et en reconnaissant une séquence cible « protospacer » suivie d’un PAM (protospacer adjacent motif). Depuis 2016, une optimisation du système CRISPR appelée édition de base permet maintenant de modifier de façon très précise la base cytidine enthymine et les guanines en adénines sur le brin opposé de l’ADN. Le premier article de cette thèse vise à démontrer que l’ajout de la forme FAD A673Ten codominance avec une autre forme pathologique provoque ou non des répercussions bénéfiques sur la sécrétion de peptides amyloïde-beta. Les expériences ont été réalisées avec des plasmides, permettant de visualiser un effet maximum de la mutation A673T. Il était important de déterminer si cette mutation était protectrice en codominance pour assurer une approche thérapeutique la plus polyvalente possible. Nous avons confirmé cet effet bénéfique sur une majorité de formes FAD et en particulier sur la mutation London V717I.Le deuxième article de cette thèse traite de l’introduction de la mutation A673T par un système dérivé de CRISPR/Cas9, l’édition de base. Plusieurs modèles d’éditeurs de base ont été comparés et optimisés dans le but d’obtenir une modification du génome aussi efficace et précise que possible. Un candidat a été sélectionné après des tests sur cellules modèles HEK 293T et neuroblastomes SH-SY5Y.La troisième partie de ce manuscrit présente les résultats obtenus lors de l’insertion de cet éditeur de base dans des vecteurs viraux dans le but d’infecter des modèles de neurones humains et murins présentant des formes FAD. L’ensemble de cette démarche a permis d’ouvrir une nouvelle avenue à une potentielle thérapie pour la maladie d’Alzheimer. / Alzheimer’s disease (AD) is the most common form of dementia in the world, withnearly fifty million people affected currently. The most common symptoms of this diseaseare memory loss, difficulties in task management, and temporal and spatial confusions. There is currently no treatment for this disease. The amyloid precursor protein (APP) is usually cut by the alpha-secretase enzyme; however, abnormal cleavage by the beta-site APP cleaving enzyme 1 (BACE1) leads to the formation of beta-amyloid peptides. These peptides in turn forms aggregates, which accumulate as plaques in the brains of Alzheimer patients. Many non-silent APP mutationscause changes to the amino acid composition of the protein and result in increased plaque accumulation. These mutations are called familial forms of Alzheimer’s disease (FAD).However, one of these mutations (Icelandic A673T mutation) has been shown to confer aprotection against the on set and development of AD. This mutation of a single mutation inexon 16 changes an alanine into a threonine and has been shown to reduce the cleavage ofthe APP protein by BACE1 by 40%.This kind of single point mutation is the perfect target for the newly discoveredCRISPR/Cas9 technology, which opens new perspectives for the development of preventiveor curative treatments for genetic diseases and in our case Alzheimer’s. The Cas9endonuclease is a powerful tool for the modification of genetic data. The protein has been shown to cut double-stranded DNA with the help of a guide RNA (gRNA) to target a specified sequence adjacent to a PAM (protospacer adjacent motif). The base CRISPRsystem has been coopted by many different research teams; one of which used the technology to develop a technique they called base editing. This technique allows researchers toexchange cytidine bases for thymine and guanine bases for adenine with a strong accuracy. The first article of this thesis aims to demonstrate that the addition of the A673Tmutation in codominance with another pathological form of AD may have beneficial effectson the reduction of beta-amyloid peptides in patients’ brains. To determine if the mutationwas protective, plasmids carrying the A673T mutation along with another random FADmutation were used. Ultimately, we confirmed the beneficial effect for many forms of FAD,in particular the London V717I mutation demonstrated the greatest reduction in beta amyloidproteins. The second article of this thesis deals with the insertion of the A673T mutation by theCRISPR/Cas9 derived system, base editing. Several base editor complexes were compared and optimized to achieve the most effective and accurate genome modification possible. A candidate was selected after testing on HEK293T cells and SH-SY5Y neuroblastoma. The third part of this manuscript presents the results obtained when using lentiviraland AAV vectors to infect induced human and mouse neurons with a base editor complex and harvested mouse neurons with FAD forms. This whole approach has opened up an avenue for a potential therapy for Alzheimer’sdisease.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/68776
Date22 April 2021
CreatorsGuyon, Antoine
ContributorsTremblay, Jacques-P.
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xx, 162 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0032 seconds