Return to search

Développement et utilisation de méthodes asymptotiques d'ordre élevé pour la résolution de problèmes de diffraction inverse. / On the development and use of higher-order asymptotics for solving inverse scattering problems.

L'objectif de ce travail fut le développement de nouvelles méthodes pour aborder certainsproblèmes inverses en élasticité, en tirant parti de la présence d'un petit paramètre dans ces problèmespour construire des approximation asymptotiques d'ordre élevé.La première partie est consacrée à l'identification de la taille et la position d'une inhomogénéité$BTrue$ enfouie dans un domaine élastique tridimensionnel. Nous nous concentrons sur l'étude defonctions-co^uts $Jbb(Br)$ quantifiant l'écart entre $BTrue$ et une hétérogénéité ``test'' $Br$. Unetelle fonction-co^ut peut en effet être minimisée par rapport à tout ou partie des caractéristiques del'inclusion ``test'' $Br$ (position, taille, propriétés mécaniques ...) pour établir la meilleurecorrespondance possible entre $Br$ et $BTrue$. A cet effet, nous produisons un développement asymptotique de $Jbb$en la taille $incsize$ de $Br$, qui en constitue une approximation polynomiale plus aisée à minimiser. Cedéveloppement, établi jusqu'à l'ordre $O(incsize^6)$, est justifié par une estimation du résidu. Uneméthode d'identification adaptée est ensuite présentée et illustrée par des exemples numériques portant surdes obstacles de formes simples dans l'espace libre $Rbb^3$.L'objet de la seconde partie est de caractériser une inclusion microstructurée de longueur $ltot$, modéliséeen une dimension, composée de couches de deux matériaux alternés périodiquement, en supposant que les plusbasses de ses fréquences propres de transmission (TEs) sont connues. Ces fréquences sont les valeurs propres d'unproblème dit de transmission intérieur (ITP). Afin de disposer d'un modèle propiceà l'inversion, tout en prenant en compte les effets de la microstructure, nous nous reposons sur des approximationsde l'ITP exact obtenues par homogénéisation. A partir du modèle homogénéisé d'ordre 0, nous établissonstout d'abord une méthode simple pour déterminer les paramètres macroscopiques ($ltot$ et contrastes matériaux)d'une telle inclusion. Pour avoir accès à la période de la microstructure, nous nous intéressons ensuite àdes modèles homogénéisés d'ordre élevé, pour lesquels nous soulignons le besoin de conditions aux limitesadaptées. / The purpose of this work was to develop new methods to address inverse problems in elasticity,taking advantage of the presence of a small parameter in the considered problems by means of higher-order asymptoticexpansions.The first part is dedicated to the localization and size identification of a buried inhomogeneity $BTrue$ in a 3Delastic domain. In this goal, we focused on the study of functionals $Jbb(Br)$ quantifying the misfit between $BTrue$and a trial homogeneity $Br$. Such functionals are to be minimized w.r.t. some or all the characteristics of the trialinclusion $Br$ (location, size, mechanical properties ...) to find the best agreement with $BTrue$. To this end, weproduced an expansion of $Jbb$ with respect to the size $incsize$ of $Br$, providing a polynomial approximationeasier to minimize. This expansion, established up to $O(incsize^6)$ in a volume integral equations framework, isjustified by an estimate of the residual. A suited identification procedure is then given and supported by numericalillustrations for simple obstacles in full-space $Rbb^3$.The main purpose of this second part is to characterize a microstructured two-phases layered1D inclusion of length $ltot$, supposing we already know its low-frequency transmission eigenvalues (TEs). Thoseare computed as the eigenvalues of the so-called interior transmission problem (ITP). To provide a convenient invertiblemodel, while accounting for the microstructure effects, we then relied on homogenized approximations of the exact ITPfor the periodic inclusion. Focusing on the leading-order homogenized ITP, we first provide a straightforward method torecover the macroscopic parameters ($ltot$ and material contrast) of such inclusion. To access to the period of themicrostructure, higher-order homogenization is finally addressed, with emphasis on the need for suitable boundaryconditions.

Identiferoai:union.ndltd.org:theses.fr/2016SACLY012
Date29 September 2016
CreatorsCornaggia, Rémi
ContributorsUniversité Paris-Saclay (ComUE), University of Minnesota, Bonnet, Marc
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0019 seconds