L'objet de cette thèse est l'étude théorique et expérimentale de gaz de Bose à une dimension (1D), confinés à la surface d'une micro-structure. Une part importante du travail de thèse a été la modification du montage expérimental: le système laser a été remplacé, et l'installation d'un nouvel objectif de grande ouverture numérique (0.4) a nécessité le changement du dessin de la puce ainsi que l'adaptation du système à vide. Nous avons étudié les corrélations du second ordre dans l'espace des impulsions, en appliquant une méthode qui nous permet d'enregistrer en une seule image la distribution en vitesses complète de notre gaz. Nos données explorent les différents régimes du gaz à faibles interactions, du gaz de Bose idéal au quasi-condensat. Ces mesures ont montré le phénomène de groupement bosonique dans les deux phases, tandis que le quasi-condensat comporte des corrélations négatives en dehors de la diagonale. Ces anti-corrélations sont une signature de l'absence d'ordre à longue portée en 1D. Les mesures sont en bon accord avec des calculs analytiques ainsi que des simulations numériques de type Monte Carlo Quantique. Ensuite, l'objet d'un second projet est l'étude du refroidissement de gaz 1D. Comme nos échantillons occupent seulement l'état fondamental du piège transverse, il n'est pas possible de sélectionner les atomes les plus énergiques pour évaporer le gaz de façon habituelle. Une méthode alternative, qui repose sur la perte non-sélective d'atomes, a été proposée et mise en pratique expérimentalement par des collègues. Leurs résultats sont compatibles avec des observations faites sur notre montage, très semblable au leur. Tout d'abord, nous avons aussi obtenu des température d'environ 10% de l'énergie de l'état fondamental transverse. Deuxièmement, des simulations champ classique ont montré la robustesse de l'état hors d'équilibre généré par de telles pertes: les différents modes perdent en effet de l'énergie à des taux différents. Ceci est en accord avec l'observation expérimentale suivante: selon la méthode de thermométrie utilisée, chacune explorant des excitations d'énergies différentes, les températures mesurées sont différentes. Enfin, nous relions cet état non-thermique à la nature intégrable du système considéré. / We present experimental and theoretical results on ultracold one-dimensional (1D) Bose gases, trapped at the surface of a micro-structure. A large part of the doctoral work was dedicated to the upgrade of the experimental apparatus: the laser system was replaced and the installation of a new imaging objective of high numerical aperture (0.4) required the modification of the atom chip design and the vacuum system. We then probed second-order correlations in momentum space, using a focussing method which allows us to record the velocity distribution of our gas in a single shot. Our data span the weakly-interacting regime of the 1D Bose gas, going from the ideal Bose gas regime to the quasi-condensate. These measurements revealed bunching in both phases, while in the quasi-condensate off-diagonal negative correlations, a the signature of the absence of long-range order in 1D, were revealed. These experimental results agree well with analytical calculations and exact Quantum Monte Carlo simulations. A second project focussed on the cooling of such 1D gases. Since the samples lie in the ground state of the transverse trap, energy selection to carry out usual evaporative cooling is not possible. An alternative cooling scheme, based on non-selective removal of particles, was proposed and demonstrated by colleagues. These findings are compatible with observations on our setup, similar to theirs. Firstly, we also reached temperatures as low as 10% of the transverse gap in earlier experiments. Secondly, with classical field simulations we demonstrate the robustness of the non-thermal arising from these losses: different modes indeed lose energy at different rates. This agrees with the following observation: depending on the thermometry we use, each probing excitations of different energies, the measured temperatures are different, beyond experimental uncertainty. Finally, we relate this non-thermal state to the integrable nature of the 1D Bose gas.
Identifer | oai:union.ndltd.org:theses.fr/2016SACLO013 |
Date | 09 December 2016 |
Creators | Johnson, Aisling |
Contributors | Université Paris-Saclay (ComUE), Bouchoule, Isabelle |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds