• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 7
  • 2
  • Tagged with
  • 18
  • 18
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conception et construction d'une expérience d'atomes froids : vers un condensat de sodium sur puce / Dedsign and construction of a cold atoms experiment : towards sodium condensates on a chip

Ben Ali, Dany 03 May 2016 (has links)
Dans cette thèse, nous décrivons les premières étapes de la construction d’une expérience de condensation d’atomes de sodium. À terme, le dispositif intégrera une puce à atomes qui permettra d’étudier la dynamique hors équilibre de gaz quantiques de dimensionnalité réduite, ainsi que leur dynamique de relaxation. Le montage expérimental est constitué d’un système laser stabilisé en fréquence sur une raie de l’iode, ainsi que d’une enceinte à ultra-vide. Cette dernière comporte un four produisant un jet atomique effusif qui est décéléré dans un ralentisseur Zeeman à aimants permanents.Nous obtenons alors un flux de 2 x 108 atomes/s, ce qui nous permet de charger près de 109 atomes dans un piège magnéto-optique. Durant la caractérisation du ralentisseur Zeeman, nous avons mis en évidence un mécanisme de redistribution des populations atomiques vers l’état F = 1 en amont du ralentisseur, induit par l’interaction avec le faisceau Zeeman. Après avoir confirmé ces observations par une résolution numérique des équations de Bloch optiques, nous avons mis en place un faisceau laser avec deux composantes de fréquence permettant de préparer initialement les atomes dans le sous-niveau F = 2;mF = - 2 pour les préserver de cet effet. Enfin, nous avons conçu un dispositif de transport magnétique permettant d’acheminer les atomes depuis l’enceinte du piège magnéto-optique vers l’enceinte du condensat. Des simulations de dynamique moléculaire nous ont permis de déterminer une séquence temporelle pour le déplacement du nuage performante, autorisant un transport de 65 cm en 1 s.Mots clés : sodium, condensation de Bose-Einstein, puce à atomes, ralentisseur Zeeman, aimants permanents, transport magnétique, dynamique moléculaire. / In this thesis, we describe the early stages in setting up a new experiment which aims at producing sodium Bose-Einstein condensates. The final apparatus will integrate an atomchip, enabling us to study the non-equilibrium dynamics of low-dimensional quantum gases, as well as their relaxation dynamics. The experimental setup comprises a laser system locked to an iodine rovibronic transition, and an ultra-high vacuum chamber. The latter consists of an oven producing an effusive atomic beam, which is decelerated in a Zeeman slower made with permanent magnets.We thus obtain a flux of 2 x 108 atoms/s, allowing the efficient loading of a magneto-optical trap containing up to 109 atoms. During the slower optimization, we observed a redistribution of the atomic populations from the F = 2 state to the F = 1 state before the entrance of the Zeeman slower. This depumping mechanism, induced by the interaction of the atoms with the slowing beam, has been confirmed by the numerical resolution of the optical Bloch equations describing the system. To circumvent this effect, we now prepare the atoms before the entrance of the slower in the  F = 2 mF = - 2  magnetic substate with a two-frequency light beam. Finally, we designed a magnetic transport system to transfer the atoms from the magnetooptical trap chamber to the condensate chamber. Based on the results of molecular dynamics simulations, we found a performing temporal sequence to move the magnetic trap, and we intend to efficiently transport the atoms over 65 cm in about 1 s.
2

Effets mécaniques de l'interaction dipolaire des atomes de Rydberg sondés par spectroscopie microonde / Mechanical effects of dipolar interaction between Rydberg atoms probed by microwave spectroscopy

Celistrino Teixeira, Raul 17 September 2014 (has links)
Les énergies typiques de l’interaction dipolaire entre atomes de Rydberg sont plusieurs ordres de grandeur au-dessus des énergies d’interaction d’atomes et molécules dans le niveau fondamental. Une échelle de distance de plusieurs micromètres découle de cette interaction, ce qui est à l’origine du phénomène de blocage dipolaire, ou la suppression d’excitations d’atomes de Rydberg dans des nuages atomiques denses. Dans une première partie de cette thèse, nous étudions l’application de ce phénomène à l’excitation déterministe d’un atome unique à partir d’un condensat de Bose-Einstein piégé magnétiquement devant une puce à atomes. Une deuxième partie est consacrée à l’étude de l’interaction dipolaire d’ensembles denses d’atomes de Rydberg par spectroscopie microonde des transitions vers les niveaux de Rydberg proches en énergie. Ces ensembles sont créés par excitation laser à partir d’un nuage froid d’atomes de Rb87 dans l’état fondamental. Les spectres des transitions microonde sont élargis et déplacés par l’interaction dipolaire. L’étude de ces spectres permet ainsi d’inférer plusieurs aspects de la distribution spatiale des atomes de Rydberg créés, ce qui révèle différents processus d’excitation selon que la lumière laser est à résonance ou désaccordée. L’évolution mécanique du nuage d’atomes de Rydberg en fonction de leur interaction répulsive a aussi été observée, grâce à une série de spectres microonde à différents délais de l’excitation. Nous montrons ainsi que, pour des échelles temporelles supérieures à 10µs, leur mouvement doit être pris en compte pour la compréhension de la dynamique d’excitation de Rydberg dans des nuages atomiques denses. / The typical energy scales that arise from dipolar interaction between Rydberg atoms are orders of magnitude bigger than those related to the interaction between atoms and molecules at the ground level. A length scale of several micrometres stems from that strong interaction, which is the cause of the so-called dipole blockade effect, or the suppression of excitation of Rydberg atoms within dense atomic clouds. In the first part of this thesis, we study the possibility of using this effect to the deterministic excitation of a single atom within a Bose-Einstein condensate in a magnetic trap created on an atom chip. In a second part, we study the dipolar interaction of Rydberg atoms in dense ensembles, through microwave spectroscopy of transitions between Rydberg levels close in energy. These ensembles are created by laser excitation of Rb87 atoms initially in the ground level, trapped in a dense, cold cloud. The spectra of the microwave transitions are broadened and shifted, due to dipolar interaction. The study of these spectra then allows to infer several aspects of the spatial distribution of the Rydberg atoms, which reveals different excitation processes depending whether the laser light is in resonance or shifted with respect to the Rydberg transition. The mechanical evolution of the Rydberg atom cloud as a function of their mutual repulsive interaction was also observed, by performing microwave spectroscopy at different delays from the laser excitation. By these observations we show that, for time scales bigger than 10µs, their movement must be taken into account if one wants to understand the dynamics of the Rydberg excitation in dense atomic clouds.
3

Design of a magnetic guide for rotation sensing by on chip atom interferometry / Conception d’un guide magnétique pour des mesures de rotation avec une puce à atomes

Yan, Wenhua 01 December 2014 (has links)
Ce mémoire présente la conception et réalisation d'un montage expérimental pour le développement d'un interféromètre à atomes froids de 87Rb guidés sur un microcircuit à atomes, l'objectif final étant la réalisation d'un capteur inertiel de rotations. Nous avons ainsi étudié théoriquement le confinement magnétique des atomes dans un guide circulaire. Une telle étude nous a permis d'identifier les principales problématiques liées à la propagation sur une orbite stable d'un paquet d'onde atomique dans un guide magnétique, à savoir: la rugosité du potentiel de guidage, les défauts du potentiel associés au motif de micro fils employés pour créer ce potentiel, et les pertes par effet Majorana. Dans cette thèse nous proposons des solutions originales à ces problèmes basés sur des études précédentes et sur les résultats de nos calculs. Du point de vue expérimental, nous avons monté une nouvelle expérience d'atomes froids dont la principale caractéristique est d'être compacte et donc transportable pour des mesures locales de vitesses de rotations. Nous avons donc, au cours de ce travail, assemblé un système à ultra vide efficace, développé un banc optique très compacte comprenant des sources laser pour le refroidissement et piégeage des atomes, un laser de Bragg pour la réalisation de l'interféromètre atomique, ainsi que toute l'électronique de contrôle de cette expérience. / This manuscript present the design and realization of an experimental setup for the development of a cold atom interferometer using 87Rb atoms guided on an atom chip, the final goal being the realization of an inertial sensor for rotation measurements. We have therefore study theoretically the magnetic confinement of these atoms in a circular guide. Such a study allowed us to identify the main challenges linked to the atomic wave packet propagation along a stable circular orbit in a magnetic guide, namely: the roughness of the guiding potential, the magnetic potential defects associated to the pattern of the micro wires used to produce this potential, and the Majorana losses. In this thesis we propose original solutions to these questions based on preliminary studies and on the results of our calculations. From the experimental point of view, we have assembled a new cold atom experiment with the main feature of being compact and therefore transportable for in situ measurement of rotations. We have along this work put together an efficient ultra high vacuum system, developed a compact optical bench containing the laser sources for cooling and trapping, a Bragg laser for the atom interferometer, as well as all the needed electronics to control the experiment.
4

Préparation, manipulation et détection d'atomes uniques sur une puce à atomes

Dubois, Guilhem 14 September 2009 (has links) (PDF)
Les techniques de refroidissement laser ont réalisé des progrès immenses depuis le début des années 80. Affranchis de toutes les incertitudes inhérentes au mouvement thermique, les physiciens sont désormais en mesure de réaliser des dispositifs de mesure toujours plus précis, tels des horloges ou des gravimètres, en s'appuyant sur l'interaction parfaitement contrôlée entre le champ électromagnétique et de simples nuages d'atomes. De plus en plus, l'utilisation d'atomes ou d'ions comme ultime porteurs d'information apparait comme une solution plausible à la réalisation d'ordinateurs quantiques. Dans cette optique, de nombreux efforts sont consentis afin de miniaturiser, de simplifier, et de rendre possible la production en masse de cette technologie permettant de manipuler les atomes avec tant de précision. L'introduction des puces à atomes a permis de réaliser un grand pas dans cette direction, réduisant drastiquement l'encombrement et le coût des expériences de refroidissement d'atomes. Désormais, la réalisation de dispositifs sur puce permettant d'étendre les possibilités de manipulation des atomes piégés est devenue un objectif majeur. <br> Dans ce travail de thèse, nous avons réalisé le premier détecteur d'atomes uniques piégés sur une puce à atomes, basé sur l'interaction avec un mode de cavité optique dans le régime de couplage fort. La cavité optique est directement intégrée à la puce à atomes. Fonctionnant dans le régime de détection dite "non-destructive", le dispositif de détection permet de préparer de manière déterministe un atome unique piégé dans un piège dipolaire, avec une précision en position submicrométrique, et dans un état interne spécifique. La détection en tant que telle permet de mesurer l'état hyperfin de l'atome, en perturbant son état externe nettement moins qu'un système de détection fonctionnant en espace libre. <br> Ce nouveau dispositif de préparation et de mesure est utilisé dans une expérience d'effet Zénon quantique, la première à être effectuée avec des atomes neutres individuels. Sous l'effet de la mesure, l'oscillation de Rabi entre les deux sous-niveaux hyperfins $\s{F=1}$ et $\s{F=2}$ du niveau fondamental de l'atome de Rubidium 87 est stoppée. L'expérience, effectuée à la fois dans le régime continu et le régime pulsé, permet de montrer l'adéquation entre le flux d'information extraite du système et le flux de photons traversant la cavité optique de détection.
5

Etats comprimés atomiques sur puce à atomes

Maussang, Kenneth 03 September 2010 (has links) (PDF)
Dans ce mémoire, nous décrivons le montage d'une expérience permettant la production de condensats de Bose-Einstein d'atomes de 87Rb sur une puce à atomes, ainsi que leur séparation en deux dans un double puits de potentiel. Un système d'imagerie de précision a été développé, permettant une mesure absolue des populations avec un très faible bruit, quasiment limité par le bruit de grenaille optique. Nous avons alors mesuré la statistique des populations après séparation, et observé directement des états comprimés en nombre, jusqu'à -4.9 dB aux basses températures par rapport à un gaz de particules classiques, indépendantes. La dépendance en température des fluctuations a également été étudiée. Pour un gaz thermique, les fluctuations sont poissoniennes, résultant de la distribution de probabilité des macroétats de différences de population données. Dans le régime dégénéré, l'effet entropique favorisant les petites différences de population disparait, donnant lieu à des fluctuations super-poissoniennes, jusqu'à +3.8 dB proche de la température de transition. Aux basses températures, le coût énergétique associé aux interactions est plus important que l'énergie thermique, et favorise alors les faibles différences de population résultant en des fluctuations subpoissoniennes. Ces deux comportements sont interprétés théoriquement à l'aide d'un modèle simple, ainsi que de simulations numériques plus élaborées. Nous avons également mesuré l'évolution de la phase relative entre les deux nuages, et son brouillage dû aux interactions, permettant alors de démontrer que la séparatrice construite est cohérente.
6

Conception et réalisation d'un gradiomètre de gravité à atomes froids / Design and realisation of a cold atom gravity gradiometer

Langlois, Mehdi 21 December 2017 (has links)
Cette thèse porte sur la conception et la réalisation d’une nouvelle expérience d’interféromètre atomique au SYRTE. Elle permettra de réaliser des mesures ultrasensibles du gradient vertical de gravité. Cette expérience fonctionnera à terme en utilisant comme source des atomes ultra-froids, préparés sur une puce à atomes. Elle utilisera comme séparatrices des transitions multiphotoniques, obtenues par diffraction de Bragg d’ordre élevé. Le transport des atomes sera assuré par des réseaux optiques en mouvement. Une première partie du dispositif expérimental a été assemblée et son fonctionnement a été validé en réalisant un interféromètre dual. Cet interféromètre est réalisé sur deux ensembles d’atomes produits successivement à partir de la même source d’atomes froids, et interrogés par une même paire de faisceaux Raman. Une nouvelle méthode d’extraction de la phase différentielle a été démontrée expérimentalement. Elle repose sur l’exploitation des corrélations entre les mesures de phase des interféromètres et une estimation de la phase sismique fournie par la mesure annexe d’un capteur classique. / This thesis is about the design and realisation of a new atomic interferometer experiment at SYRTE. It will allow ultra-sensitive measurements of the vertical gradient of gravity. This experiment will work using ultra-cold atoms as a source, prepared on an atom chip. It will use large momentum transfer beam-splitter, obtained by high order Bragg diffraction. The transport of atoms will be provided by moving optical lattices. A first part of the experimental setup was assembled and its operation was validated by producing a dual interferometer. This interferometer is performed on two atomic clouds produced successively from the same source of cold atoms, and interrogated by the same pair of Raman beams. A new method of differential phase extraction has been experimentally demonstrated. It is based on the exploitation of the correlations between the interferometer phase measurements and the estimation of the seismic phase provided by an additional classical sensor.
7

Towards deterministic preparation of single Rydberg atoms and applications to quantum information processing / Préparation déterministe d'atomes de Rydberg uniques pour des expériences d'information quantique

Hermann Avigliano, Carla 25 November 2014 (has links)
Les atomes de Rydberg couplés à des cavités supraconductrices sont des outils remarquables pour l’exploration des phénomènes quantiques élémentaires et des protocoles d’information quantique. Ces atomes «géants» ont des propriétés uniques. Ils sont soumis à une forte interaction dipôle-Dipôle, fonction de la distance interatomique, qui est responsable du mécanisme de blocage dipolaire : dans le régime de Van der Waals, l’énergie d’interaction croît comme n11, où n est le nombre quantique principal. Si on illumine un nuage atomique avec un laser d’excitation à la fréquence de la transition de Rydberg pour un atome isolé, on s’attend à exciter au plus un atome dans un volume de blocage de ⇠ 8(μm)3. Nous avons mis en place une expérience pour préparer un atome de Rydberg de façon déterministe. Elle utilise un petit nuage d’atomes de rubidium 87 dans l’état fondamental, piégés magnétiquement sur un puce à atomes supraconductrice à 4 K, et excités à l’aide de lasers vers les états de Rydberg. L’effet de blocage dipôlaire est sensible à l’élargissement spectral de la transition par des champs électriques parasites. Une fois unatome excité dans l’état cible 60S1/2↵, nous explorons les transitions atomiques étroites, de longueur d’onde millimétrique, entre états de Rydberg pour étudier ces champs parasites. La surface de notre puce étant couverte d’une pellicule d’or, nous observons comme d’autres groupes de recherche de forts gradients de champs électriques, dus au dépôt progressif d’atomes de rubidium à la surface de la puce. Nous contournons le problème, en déposant une couche de rubidium métallique sur la puce. Les gradients sont alors réduits d’un ordre de grandeur. Cette amélioration nous permet d’observer des temps de cohérence très élevés, de l’ordre de la milliseconde, pour des atomes de Rydberg au voisinage d’une puce supraconductrice.Sur le plan théorique, nous présentons un protocole simple pour la création rapide et efficace de superpositions quantiques de deux champs cohérents d’amplitudes classiques différentes dans une cavité. Il repose sur l’interaction de deux atomes à deux niveaux avec le champ dans la cavité. Leur détection avec une grande probabilité dans un état bien défini projette le champ dans une superposition mésoscopique d’états du champ. Nous montrons que ce protocole est nettement plus efficace que ceux utilisant un seul atome. Nous réalisons cette étude dans le contexte de l’électrodynamique en cavité (CQED), où les atomes à deux niveaux sont des atomes de Rydberg de grand temps de vie interagissant avec le champ d’une cavité micro-Ondes supraconductrice. Mais ce travail peut également s’appliquer au domaine en plein essor de l’électrodynamique quantique des circuits. Dans ces deux contextes, il peut conduire à d’intéressantes études expérimentales de la décohérence à la frontière quantique-Classique. / Rydberg atoms and superconducting cavities are remarkable tools for the exploration of basic quantum phenomena and quantum information processing. These giant atoms are blessed with unique properties. They undergo a strong distance-Dependent dipole-Dipole interaction that gives rise to the dipole blockade mechanism: in the Van der Waals regime, this energy shift scales as n11, where n is the principal quantum number. If we shine an excitation laser tuned at the frequency of the isolated atomic transition on an atomic cloud, we expect to excite at most one atom within a blockade volume of ⇠ 8(μm)3. We have set up an experiment to prepare deterministically one Rydberg atom. It uses a small cloud of ground-State Rubidium 87 atoms, magnetically trapped on a superconducting atom chip at 4 K, and laser-Excited to the Rydberg states. The dipole blockade effect is sensitive to the line broadening due to the stray electric fields. Once an atom has been excited to our target state HH 60S1/2↵, we explore the narrow millimeter-Wave transitions between Rydberg states in order to assess these stray fields . With a gold-Coated front surface for the chip, we observe as other groups large field gradients due to slowly deposited Rubidium atoms. We circumvent this problem by coating the chip with a metallic Rubidium layer. This way the gradients are reduced by an order of magnitude. This improvement allows us to observe extremely high coherence times, in the millisecond range, for Rydberg atoms near a superconducting atom-Chip. Theoretically, we present a simple scheme for the fast and efficient generation of quantum superpositions of two coherent fields with different classical amplitudes in a cavity. It relies on the simultaneous interaction of two two-Level atoms with the field. Their final detection with a high probability in the proper state projects the field onto the desired mesoscopic field state superposition (MFSS). We show that the scheme is notably more efficient than those using a single atom. This work is done in the context of cavity QED, where the two-Level systems are circular Rydberg atoms whose lifetime may reach milliseconds, interacting with the field of a superconducting microwave cavity. But this scheme is also highly relevant for the thriving field of circuit-QED. In both contexts, it may lead to interesting experimental studies of decoherence at the quantum-Classical boundary.
8

Design and Study of Microwave Potentials for Interferometry with Thermal Atoms On a Chip / Conception et étude des potentiels micro-ondes pour l'interférométrie avec des atomes thermiques sur puce

Ammar, Mahdi 17 June 2014 (has links)
Dans cette thèse, nous présentons l'étude théorique d'un interféromètre atomique utilisant des atomes thermiques (i.e. non condensés) piégés sur une puce, avec des effets de champ moyen réduits. Afin de maintenir un niveau adéquat de cohérence, un haut degré de symétrie entre les deux bras d'un tel interféromètre est nécessaire. Pour atteindre cet objectif, nous décrivons un protocole expérimental basé sur l'utilisation des micro-ondes en champ proche générés par deux guides d'ondes coplanaires transportant des courants oscillants à des fréquences différentes. Nous étudions principalement deux configurations symétriques pour réaliser une séparatrice atomique, soit le long de l'axe longitudinal soit le long de l'axe transversal du piège magnétique statique.Dans le cas d'une séparation transversale des atomes, nous discutons la nécessité d'utiliser un micro-piège sur-mesure qui possède une structure de champ similaire à celle d'un Ioffe Prichard macroscopique et nous proposons une conception concrète d'un tel micro-piège. Dans le cas d'une séparation axiale des atomes, nous étudions certains facteurs physiques qui limitent les performances ultimes de cet interféromètre tels que : la dissymétrie des potentiels, l'effet des fluctuations des champs statiques et micro-ondes, et la stabilité du signal gravitationnel de l'interféromètre. Nous utilisons un modèle harmonique unidimensionnel simplifié pour décrire la chute du contraste de l'interféromètre. Enfin, nous envisageons la possibilité d'une séparation et d'une recombinaison atomique non-adiabatique sans chauffage vibrationnel en concevant des trajectoires appropriées des potentiels de piégeages. / In this thesis, we report the theoretical study of an atom interferometer using thermal (i.e. non condensed) atoms trapped on a chip, with reduced mean-field effects. To keep an adequate level of coherence, a high level of symmetry between the arms of such an interferometer is required. To achieve this goal, we describe an experimental protocol based on microwave near-fields created by two coplanar waveguides carrying currents oscillating at different frequencies. This method enables the creation of two symmetrical microwave potentials that depend on the atomic internal state, and allows a state-selective symmetrical splitting of the atoms. We mainly consider two symmetrical configurations to separate the atoms either along the longitudinal axis or along the transverse axis of the static magnetic trap. In the case of a transverse splitting of the atoms, we discuss the advantages of using a custom microtrap that has the same field structure as a standard macroscopic Ioffe Pritchard trap, and we propose a practical design for such a microtrap. In the case of an axial splitting of the atoms, we study some physical factors limiting the ultimate performances of this interferometer such as: the dissymmetry of the microwave potentials, the effect of the fluctuations of static and microwave fields and the stability of the interferometer gravitational signal. We derive a simplified one-dimensional harmonic model to describe the interferometer contrast decay. Finally, we consider the possibility of non-adiabatic atomic splitting and recombination without vibrational heating by designing appropriate trajectories of the trapping-potentials based on the theory of dynamical invariants.
9

One-dimensional Bose Gases on an Atom Chip : Correlations in Momentum Space and Theoretical Investigation of Loss-induced Cooling. / Gaz de Bose à une dimension sur puce atomique : corrélations dans l'espace des impulsions et étude théorique de refroidissement par perte d'atomes.

Johnson, Aisling 09 December 2016 (has links)
L'objet de cette thèse est l'étude théorique et expérimentale de gaz de Bose à une dimension (1D), confinés à la surface d'une micro-structure. Une part importante du travail de thèse a été la modification du montage expérimental: le système laser a été remplacé, et l'installation d'un nouvel objectif de grande ouverture numérique (0.4) a nécessité le changement du dessin de la puce ainsi que l'adaptation du système à vide. Nous avons étudié les corrélations du second ordre dans l'espace des impulsions, en appliquant une méthode qui nous permet d'enregistrer en une seule image la distribution en vitesses complète de notre gaz. Nos données explorent les différents régimes du gaz à faibles interactions, du gaz de Bose idéal au quasi-condensat. Ces mesures ont montré le phénomène de groupement bosonique dans les deux phases, tandis que le quasi-condensat comporte des corrélations négatives en dehors de la diagonale. Ces anti-corrélations sont une signature de l'absence d'ordre à longue portée en 1D. Les mesures sont en bon accord avec des calculs analytiques ainsi que des simulations numériques de type Monte Carlo Quantique. Ensuite, l'objet d'un second projet est l'étude du refroidissement de gaz 1D. Comme nos échantillons occupent seulement l'état fondamental du piège transverse, il n'est pas possible de sélectionner les atomes les plus énergiques pour évaporer le gaz de façon habituelle. Une méthode alternative, qui repose sur la perte non-sélective d'atomes, a été proposée et mise en pratique expérimentalement par des collègues. Leurs résultats sont compatibles avec des observations faites sur notre montage, très semblable au leur. Tout d'abord, nous avons aussi obtenu des température d'environ 10% de l'énergie de l'état fondamental transverse. Deuxièmement, des simulations champ classique ont montré la robustesse de l'état hors d'équilibre généré par de telles pertes: les différents modes perdent en effet de l'énergie à des taux différents. Ceci est en accord avec l'observation expérimentale suivante: selon la méthode de thermométrie utilisée, chacune explorant des excitations d'énergies différentes, les températures mesurées sont différentes. Enfin, nous relions cet état non-thermique à la nature intégrable du système considéré. / We present experimental and theoretical results on ultracold one-dimensional (1D) Bose gases, trapped at the surface of a micro-structure. A large part of the doctoral work was dedicated to the upgrade of the experimental apparatus: the laser system was replaced and the installation of a new imaging objective of high numerical aperture (0.4) required the modification of the atom chip design and the vacuum system. We then probed second-order correlations in momentum space, using a focussing method which allows us to record the velocity distribution of our gas in a single shot. Our data span the weakly-interacting regime of the 1D Bose gas, going from the ideal Bose gas regime to the quasi-condensate. These measurements revealed bunching in both phases, while in the quasi-condensate off-diagonal negative correlations, a the signature of the absence of long-range order in 1D, were revealed. These experimental results agree well with analytical calculations and exact Quantum Monte Carlo simulations. A second project focussed on the cooling of such 1D gases. Since the samples lie in the ground state of the transverse trap, energy selection to carry out usual evaporative cooling is not possible. An alternative cooling scheme, based on non-selective removal of particles, was proposed and demonstrated by colleagues. These findings are compatible with observations on our setup, similar to theirs. Firstly, we also reached temperatures as low as 10% of the transverse gap in earlier experiments. Secondly, with classical field simulations we demonstrate the robustness of the non-thermal arising from these losses: different modes indeed lose energy at different rates. This agrees with the following observation: depending on the thermometry we use, each probing excitations of different energies, the measured temperatures are different, beyond experimental uncertainty. Finally, we relate this non-thermal state to the integrable nature of the 1D Bose gas.
10

Propagation of atoms in a magnetic waveguide on a chip / Propagation d'atomes dans un guide magnétique sur puce

Bade, Satyanarayana 18 November 2016 (has links)
Dans cette thèse, nous étudions la propagation des atomes dans un guide magnétique toroïdal, dans le but de développer un capteur inertiel. Ici, nous présentons différentes stratégies pour créer un guide sur une puce atomique pour un interférometre Sagnac atomique guidé. Nous avons mis au point trois solutions qui peuvent être realisé avec la même configuration des fils. Ils utilise la technique de modulation de courant avec un nouveau point de vue qui traite simultanément la problème de rugosité des fils et les pertes de Majorana dépendant du spin. L'effect de la propagation multimode des atomes dan le guide est aussi quantifié dans cette thèse. En utilisant un modèle simple, nous avons couvert les cas de la propagation de gaz non interactif ultra froids et thermique. Nous avons identifié les conditions operationelles pour realiser un interferometre à atomes froids avec une grande gamme dynamique, essentielle pour les application en navigation inertielle. Expérimentalement, cette thèse decrit la réalisation et la characterisation de la source atomes froids proche d'un substrat avec un dépôt d'or, ainsi que l'implémentation et la caracterisation des systèmes de détection. / In this thesis we study the propagation of atoms in a magnetic toroidal waveguide, with the aim of developing an inertial sensor. Here, we present different strategies to create the waveguide on an atom chip for a guided Sagnac atom interferometer. We devised three solutions which can be achieved using the same wire configuration. They use the current modulation technique, from a new point of view, which simultaneously tackles the problem of wire corrugation and spin dependent Majorana atom losses. The effect of the multimode propagation of the atoms in the guide is also quantified in this thesis. Using a simple model, we covered the propagation of noninteracting ultracold and thermal gases. We identified the operating conditions to realize a cold atom interferometer with a large dynamic range essential for applications in inertial navigation. Experimentally, the thesis describes the realisation and characterisation of the cold atom source close to a gold coated substrate, as well as the implementation and the characterisation of the atom detection systems.

Page generated in 0.0534 seconds