We analyze the asymptotic behavior in the limit epsilon to zero for a wide class of difference operators H_epsilon = T_epsilon + V_epsilon with underlying multi-well potential. They act on the square summable functions on the lattice (epsilon Z)^d.<br>
We start showing the validity of an harmonic approximation and construct WKB-solutions at the wells. Then we construct a Finslerian distance d induced by H and show that short integral curves are geodesics and d gives the rate for the exponential decay of Dirichlet eigenfunctions. In terms of this distance, we give sharp estimates for the interaction between the wells and construct the interaction matrix. / Wir analysieren das asymptotische Verhalten im Grenzwert epsilon gegen null von einer weiten Klasse von Differenzen operatoren H_epsilon = T_epsilon + V_epsilon mit unterliegendem Potential. Sie wirken auf die quadrat-summierbaren Funktionen auf dem Gitter (epsilon Z)^d.<br>
Zunächst zeigen wir die Gültigkeit einer harmonischen Approximation und konstruieren WKB-Lösungen an den Töpfen. Dann konstruieren wir eine Finslersche Abstandsfunktion d, die durch H induziert wird und zeigen, daß kurze Integralkurven Geodäten sind und daß d die Rate des exponentiellen Abfallverhaltens von Dirichlet-Eigenfunktionen beschreibt. Bezügliche dieses Abstands geben wir scharfe Abschätzungen für die Wechselwirkung zwischen den Töpfen und konstruieren die Wechselwirkungs-Matrix.
Identifer | oai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:739 |
Date | January 2006 |
Creators | Rosenberger, Elke |
Publisher | Universität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Mathematik |
Source Sets | Potsdam University |
Language | English |
Detected Language | German |
Type | Text.Thesis.Doctoral |
Format | application/pdf |
Rights | http://opus.kobv.de/ubp/doku/urheberrecht.php |
Page generated in 0.002 seconds