Estudamos autômatos celulares que apresentam quebra de simetria no diagrama espaço temporal que permite visualizar estruturas e partículas que obedecem a um processo de difusão determinística. As regras que geram o mecanismo de difusão estudado neste trabalho, são regras de autômatos binários unidimensionais com vizinhança de três sítios, também conhecidas como regras elementares. Neste trabalho optamos por estudar a regra 18 por ser a mais discutida na literatura, porém existem outras regras elementares que apresentam o mesmo mecanismo de quebra de simetria. Mostramos que as partículas difusivas observadas durante a evolução temporal, também chamadas de kinks, se comportam de maneira análoga aos gliders da regra 20, apresentando três escalas de tempo características durante a evolução temporal. Definimos um critério que permite detectar estas escalas de tempo, baseado na colisão e aniquilação dos kinks. Observamos que as escalas de tempo envolvidas na evolução temporal do autômato são afetadas pela densidade de kinks na condição inicial, que acelera ou retarda as interações entre as partículas. Como ocorre interação entre os kinks, determinamos como a difusão é afetada por estas interações.O tipo de critério que definimos para a detecção das escalas de tempo do autômato revela propriedades a respeito do transiente, ele nada nos informa a respeito do regime periódico do autômato. Estudamos então o comportamento periódico, realizando estatísticas da distribui ção dos períodos para tamanhos de rede pequenos. Encontramos poucos valores de período, sendo que os maiores períodos são múltiplos dos menores. / We study cellular automata which display symmetry breaking in the space-time diagram, allowing one to observe structures and particles which behave according to a deterministic diffusive process. The rules responsible for the diffusion mechanism are those of unidimensional, binary automata, also known as the elementary rules. While many elementary rules exist which present such symmetry breaking mechanism, we have opted to focus on rule 18, as it is the most widely discussed in the literature. We show that the diffusive particles – called kinks – behave analogously as gliders in rule 20, presenting three distinct characteristic time scales. We propose a criterion which discriminates the different time scales, based on the kink’s collision and annihilation. We observe that the time scales involved in the automata’s temporal evolution are affected by the initial kink density, which accelerates or restrains the interactions between particles. As kinks interact, we determine how diffusion is affected by such interactions. The criterion proposed to detect the time scales reveals properties of the initial transients, but provides no information concerning the final periodic regime. Thus, we study the final periodic behavior from distribution statistics for small lattice sizes. A striking result is that asymptotically one finds the presence of just a small number of residual periods, the larger ones being multiples of the smaller.
Identifer | oai:union.ndltd.org:IBICT/oai:lume.ufrgs.br:10183/12079 |
Date | January 2008 |
Creators | Muller, Ana Paula Oliveira |
Contributors | Gallas, Jason Alfredo Carlson |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds