<p>ITU - T and the Moving Picture Expert Group (MPEG) have jointly, under the name of Joint Video Team (JVT), developed a new video coding standard. The standard is called H.264 and is also known as Advanced Video Coding (AVC) or MPEG-4 part 10. Comparisons shows that H.264 greatly outperforms MPEG-2, currently used in DVD and digital TV. H.264 halves the bit rate with equal image quality. The great rate - distortion performance means nevertheless a high computational complexity. Especially on the encoder side.</p><p>Handling of audio and video, e.g. compressing and filtering, is quite complex and requires high performance hardware and software. A video encoder consists of a number of modules that find the best coding parameters. For each macroblock several $modes$ are evaluated in order to achieve optimal coding. The reference implementation of H.264 uses a brute force search for this mode selection which is extremely computational constraining. In order to perform video encoding with satisfactory speed there is an obvious need for reducing the amount of modes that are evaluated.</p><p>This thesis proposes an algorithm which reduces the number of modes and reference frames that are evaluated. The algorithm can be regulated in order to fulfill the demand on quality versus speed. Six times faster encoding can be obtained without loosing perceptual image quality. By allowing some quality degradation the encoding becomes up to 20 times faster.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:liu-3788 |
Date | January 2005 |
Creators | Hållmarker, Ola, Linderoth, Martin |
Publisher | Linköping University, Department of Electrical Engineering, Linköping University, Department of Electrical Engineering, Institutionen för systemteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, text |
Page generated in 0.0016 seconds