Orientador: Claudio Aguinaldo Buzzi / Banca: Marco antonio Teixeira / Banca: Ronaldo Alves Garcia / Banca: João Carlos da Rocha Medrado / Banca: Paulo Ricardo da Silva / Resumo: Este trabalho está relacionado com Teoria Qualitativa dos Sistemas Dinâmicos suaves por partes. Estudamos a existência de conjuntos limite, chamados ciclos canard, para esta classe de sistemas definidos no plano e analisamos quando ciclos limite de campos suaves convergem para estes. O conceito de Índice de Poincará foi generalizado para cmapos suaves por partes no plano. Seguindo o programa de Thpm-Smale, exibimos famílias a 3-parâmetros, bem como os respectivos diagramas de bifurcação, das singularidades planares denominadas Dobra-Sela e Dobra-Cúspide. Também aplicamos o Método Averaging de Primeira Ordem para quantificar os ciclos limite e ciclos canard de uma classe de campos lineares por partes no espaço n-dimensional. / Abstract: This work is related to Qualitative Theory of non-smooth Dynamical Systems. We study the existence os limit sets, named canard cycles, for this class of planar systems. And we analyze when limit cycles of smooth vector fields converge to them. The concept of Poincaré Index was generalized for planar non-smooth systems. Following the Thom-Smale program we exhibit 3-parameter families, and its bifurcation diagrams, of the planar singularities called Fold-Saddle and Fold-Cusp. We apply the First Order Averaging Method to obtain an upper bound to the number of limit cycles and canard cycles for a special class of piecewise linear differential systems in the n-dimensional space. / Doutor
Identifer | oai:union.ndltd.org:UNESP/oai:www.athena.biblioteca.unesp.br:UEP01-000639452 |
Date | January 2011 |
Creators | Carvalho, Tiago de. |
Contributors | Universidade Estadual Paulista "Júlio de Mesquita Filho" Instituto de Biociências, Letras e Ciências Exatas. |
Publisher | São José do Rio Preto : [s.n.], |
Source Sets | Universidade Estadual Paulista |
Language | Portuguese |
Detected Language | Portuguese |
Type | text |
Format | 128 f. : |
Relation | Sistema requerido: Adobe Acrobat Reader |
Page generated in 0.0022 seconds