Return to search

Caracterização e melhoramento de bio-óleo proveniente de semente de goiaba - Psidium guajava L.

Fundação de Apoio a Pesquisa e à Inovação Tecnológica do Estado de Sergipe - FAPITEC/SE / The present work had as objective to use guava residues (seeds) as biomass for the production of bio-oil through conventional pyrolysis. The biomass presented a moisture content of 3.49 ± 0.03 %, high carbon content (67.04 %), nitrogen (3.96 %), oxygen (22.86 %), hydrogen (6.18 %), protein content (11.81 ± 0.36 %), fiber (11.78 ± 0.45 %), calorific power (24.69 MJ kg -1), ash content (0.76 ± 0.02 %), oil (11.78 ± 0.45 %), cellulose (48.71 %), hemicellulose (11.52 %) and lignin (10.12 %). The thermogravimetric curve of the sample amounts to 90 % of mass loss at 450 °C. The biomass was used in two reactors (quarzto and inox) for the production of bio-oil. Preliminary, the experiments in a quartz reactor evaluated the conditions: temperature (500 to 700 °C), sample mass (5 and 11 g) and pyrolysis time (5 and 10 min) with flow 1mL min-1. The best condition in the quartz reactor was 500 °C, 11 g of seed with the collection time of 5 min and 17.1 % of bio-oil yield. The following experiments were carried out in the steel reactor with constants pyrolysis temperature and flow, 500 ºC and 1mL min-1, respectively. Also, the following variables: sample mass (10 and 20 g), granulometry (seed entire and grain) and salts (K2HPO4 and K3PO4). The best condition in the stainless steel reactor was 20 g of sample, ground seed and without addition of salt, obtaining 23.94 % of bio-oil yield. Since the bio-oil was obtained, it was submitted to liquid-liquid extractions in a 250 mL separating funnel using dichloromethane (DCM) (60 mL) to separate the organic phase (bio-oil) and aqueous phase. For the improvement with model molecule (phenol), diisobutylene was used as reagent and sulfuric acid, Amberlyst (A-15) and sulfated zirconia as catalysts. The conditions for the enhancement were temperature (120 to 180 ° C), molar ratio (1: 1 to 1: 5) and percentage of catalyst (1 to 5% w / w), where the best product conversion was gotten with 150 °C, 1: 3 ratio and 3 % Amberlyst (A-15) yielding 99.8 % product conversion. From the last condition cited above the improvement was made with the bio-oil obtained from the steel reactor. The bio-oils (quartz and steel reactor) were analyzed by infrared, thermogravimetry and GC / MS. After the identification of the compounds by chromatography, the bio-oil from steel reactor (under the conditions: 20 g of sample, ground seed and 10 % K3PO4), showed greater quantity of phenolic compounds being then used in the improvement. / O presente trabalho teve como objetivo utilizar resíduos (sementes) de goiaba como biomassa para produção de bio-óleo via pirólise convencional. A biomassa apresentou teor de umidade de 3,49 ± 0,03 %, alto teor de carbono (67,04 %), nitrogênio (3,96 %), oxigênio (22,86 %), hidrogênio (6,18 %), poder calorífico (24,69 MJ kg-1), teor de cinzas (0,76 ± 0,02 %), proteínas (11,81 ± 0,36 %), fibras (11,78 ± 0,45 %), óleo (11,78 ± 0,45 %), celulose (48,71 %), hemicelulose (11,52 %) e lignina (10,12 %). A curva termogravimétrica da amostra apresentou cerca de 90% de perda da massa na temperatura de 450 °C. A biomassa foi utilizada em dois reatores (quarzto e inox) para a produção de bio-óleo. Os experimentos preliminares realizado em reator de quartzo avaliaram as condições: temperatura (500 a 700 °C), massa da amostra (5 e 11 g) e tempo de pirólise (5 e 10 min), com fluxo de 1mL min-1. A melhor condição no reator de quarzto foi 500 °C, 11 g de semente e com o tempo de coleta de 5 min, com 17,1 % de rendimento de bio-óleo. Em sequência, foram realizados os experimentos no reator de aço, com temperatura de pirólise (500 °C) e fluxo (1mL min-1) constantes e as seguintes variáveis: massa da amostra (10 e 20 g), granulometria (semente inteira e semente moída) e sais (K2HPO4 e K3PO4). A melhor condição no reator de inox foi com 20 g de amostra, semente moída e sem adição de sal, obtendo 23,94 % de rendimento de bio-óleo. Uma vez obtido o bio-óleo, este foi submetido a extrações líquido líquido em um funil de decantação de 250 mL, utilizando diclorometano (DCM) (60 mL) para separação da fase orgânica (bio-óleo) e fase aquosa. Para a realização do melhoramento com molécula modelo (fenol), usou-se diisobutileno como reagente e como catalisadores ácido sulfúrico, Amberlyst (A-15) e zircônia sulfatada. As condições para a realização do melhoramento foram temperatura (120 a 180 °C), razão molar (1:1 a 1:5) e percentual de catalisador (1 a 5 % m/m), onde a melhor conversão de produtos foi com 150 °C, com razão de 1:3, e 3 % de Amberlyst (A-15) com 99,8 % de conversão de produtos. Com a melhor condição citada anteriormente, foi realizado o melhoramento com o bio-óleo originado do reator de aço. Os bio-óleos (reator de quartzo e aço) foram analisados por infravermelho, termogravimetria e GC/MS, após a identificação dos compostos por cromatografia, o bio-óleo do reator de aço nas condições de 20 g de amostra, semente moída e 10 % K3PO4,apresentou uma maior quantidade de compostos fenólicos, sendo este utilizado no melhoramento.

Identiferoai:union.ndltd.org:IBICT/oai:ri.ufs.br:riufs/3270
Date23 May 2016
CreatorsNascimento, Juciara dos Santos
ContributorsFreitas, Lisiane dos Santos, Ramos, André Luis Dantas
PublisherUniversidade Federal de Sergipe, Pós-Graduação em Biotecnologia, UFS, Brasil
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf
Sourcereponame:Repositório Institucional da UFS, instname:Universidade Federal de Sergipe, instacron:UFS
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0028 seconds