The emerging class of biologic drugs, including proteins, peptides, and gene therapies, are widely administered by injection, despite potential systemic side effects. Rational design of targeted carriers that can be delivered non-invasively, with reduced side effects, is essential for the success of these therapies, as well as for the improvement of patient compliance and quality of life.
One potential approach is to take advantage of specific physiological cues, such as enzymes, which would trigger drug release from a drug carrier. Enzymatic cleavage is highly specific and could be tailored for certain diseased tissues where specific enzymes are up regulated. Enzymatically-degradable hydrogels, which incorporate an enzyme- cleavable peptide into the network structure, have been extensively reported for releasing drugs for tissue engineering applications. These studies showed that a rapid response and corresponding drug release occurs upon enzyme exposure, whereas minimal degradation occurs without enzyme. Recently, Michael addition reactions have been developed for the synthesis of such enzymatically-degradable hydrogels. Michael addition reactions occur under mild physiological conditions, making them ideally suited for polymerizing hydrogels with encapsulated biologic drugs without affecting its bioactivity, as in
traditional polymerization and particle synthesis. The focus of my research was to create enzymatically-degradable hydrogel microparticles, using Michael addition chemistry, to evaluate for use as an inhalable, disease-responsive delivery system for biologic drugs and nanoparticles.
In this dissertation, I utilize bioconjugation and Michael addition chemistries in the design and development of enzymatically-degradable hydrogels, which may be tailored to a multitude of disease applications. I then introduce a new method of hydrogel microparticle, or microgel, synthesis known as the Michael Addition During Emulsion (MADE) method. These microgel carriers were evaluated in vitro, and found to exhibit triggered release of encapsulated biologic drugs in response to enzyme, no significant cytotoxic effects, and the ability the avoid rapid clearance by macrophages. Lastly, in vivo studies in mice were conducted, and microgels were found to exhibit successful delivery to the deep lung, as well as prolonged pulmonary retention after intratracheal aerosol delivery. In conclusion, a new class of enzymatically-degradable microgels were successfully developed and characterized as a versatile and promising new system for pulmonary, disease-responsive delivery of biologic drugs. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/23398 |
Date | 04 March 2014 |
Creators | Wanakule, Prinda 1985- |
Source Sets | University of Texas |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0021 seconds