Return to search

Transitions de phase en turbulence bidimensionnelle et géophysique

Prédire la statistique des grandes échelles des écoulements turbulents constitue un enjeu important. Pour l'équation d'Euler 2D et des modèles analogues d'écoulements géophysiques, une auto-organisation est observée (formation de cyclones/anticyclones, jets intenses). La mécanique statistique d'équilibre des écoulements bidimensionnels s'est avérée fondamentale et pertinente même en présence de forçage et dissipation, dans la limite inertielle. La thèse est motivée par le phénomène de transitions aléatoires entre deux topologies différentes, lié à une bistabilité. Il s'agit de prédire la multiplicité des équilibres d'un écoulement (quasi) bidimensionnel. On développe une classification des transitions de phase, pour des équilibres (statistiques et/ou dynamiques) d'un tel écoulement. Les diagrammes de phase font apparaître la présence générique de points critiques et tricritiques, et des domaines d'inéquivalence d'ensembles statistiques. Dans le cas d'une géométrie annulaire, on décrit les effets de la topographie et de la conservation de deux circulations. Des analogies avec la bistabilité du courant océanique Kuroshio sont proposées à partir de cette étude académique. Enfin, pour le système Euler 2D, on détaille un résultat de mécanique statistique dans l'ensemble énergie-enstrophie : la distribution microcanonique, construite à partir du théorème de Liouville en dimension finie, correspond à la maximisation d'une entropie de mélange de la vorticité.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00675763
Date10 January 2012
CreatorsCorvellec, Marianne
PublisherEcole normale supérieure de lyon - ENS LYON
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0014 seconds