Cette thèse étudie la catégorie dérivée du bloc principal du groupe fini GL(2,q) en caractéristique l. On dispose grâce à la théorie de Deligne-Lusztig de deux complexes Le et Ls. Si l est différent de 2 alors les l-sous-groupes de Sylow de GL(2,q) sont abéliens, je vérifie que si l divise q-1 (respectivement q+1) alors le complexe Le (respectivement Ls) induit une équivalence dérivée ``splendide'' entre la somme des blocs de défaut maximal de GL(2,q) et l'algèbre du normalisateur d'un l-sous-groupe de Sylow. Ceci vérifie la conjecture de Broué. Si l=2 et q est impair, alors les l-sous-groupes de Sylow de GL(2,q) ne sont pas abéliens. Je montre que si q est congru à 1 ou 7 modulo 8 alors il n'existe aucun sous-groupe local H de GL(2,q) tel que les blocs principaux de H et de GL(2,q) sont de même type. Si q est congru à 3 ou 5, je considère le normalisateur dans GL(2,q) d'un sous-groupe de Sylow de SL(2,q). Je montre que son bloc principal est de même type que celui de GL(2,q) puis que ces deux blocs sont reliés par une équivalence dérivée ``splendide''. J'utilise ensuite la théorie des A-infini-algèbres. A partir des complexes Le et Ls je construis une A-infini-algèbre minimale dont la catégorie dérivée est équivalente à celle du bloc principal de GL(2,q). Il s'agit donc d'une algèbre associative graduée munie d'une structure supplémentaire. Cette construction généralise la construction des équivalences splendides effectuée dans les cas où les sous-groupes de Sylow sont abéliens. Je donne une description complète des A-infini-algèbres obtenues en considérant PGL(2,q) plutôt que GL(2,q). Je montre en particulier que les applications m(n) (pour n>2) donnant la A-infini-structure supplémentaire sont nulles pour n>3.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00002033 |
Date | 04 October 2002 |
Creators | Gonard, Bertrand |
Publisher | Université Paris-Diderot - Paris VII |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds