Orientador: Waldemar Donizete Bastos / Banca: Jesus Carlos da Mota / Banca: Andréa Cristina Prokopczyk Arita / Resumo: Nesse trabalho provamos existência de solução fraca para o problema de Dirichlet não linear { − ∆ u = f ( u ) + g em Ω, u = 0 em ∂ Ω. onde f ∈ C 2 ( R), g ∈ L2 (Ω) onde Ω é um domínio suave e limitado de R3 . Para isso estudamos alguns resultados básicos do Cálculo Diferencial em espaços de Banach e o problema de Dirichlet homogêneo para a equação de Laplace / Abstract: In this work we prove the existence of weak solution for the nonlinear Dirichlet problem{ − ∆ u = f ( u ) + g em Ω, u = 0 em ∂ Ω. where f ∈ C 2 ( R ) , g ∈ L2 (Ω) and Ω is a b ounded smo oth domain in R3 . For this we study some basic results of the Differential Calculus in Banach spaces and the homogeneous Dirichlet problem for Laplace's equation / Mestre
Identifer | oai:union.ndltd.org:UNESP/oai:www.athena.biblioteca.unesp.br:UEP01-000685493 |
Date | January 2012 |
Creators | Tavares, Leandro da Silva. |
Contributors | Universidade Estadual Paulista "Júlio de Mesquita Filho" Instituto de Biociências, Letras e Ciências Exatas. |
Publisher | São José do Rio Preto : [s.n.], |
Source Sets | Universidade Estadual Paulista |
Language | Portuguese |
Detected Language | Portuguese |
Type | text |
Format | 56 f. : |
Relation | Sistema requerido: Adobe Acrobat Reader |
Page generated in 0.0029 seconds