En utilisant le calcul de Malliavin et la théorie des formes de Dirichlet à travers la propriété de densité de l'énergie image, nous menons une étude de la régularité des mesures invariantes. Les cas discret et continu sont traités. Nous en déduisons des vitesses de convergence à l'équilibre, grace à un renforcement "quantitatif" de la propriété de densité de l'énergie image, qui permet d'établir des convergences en variation totale de mesures. De nombreuses conséquences sont déduites de cette propriété, comme le caractère Rajchman des variables non dégénérées au sens de l'opérateur carré du champ, ceci va dans le sens de la conjecture de Bouleau-Hirsch.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00690724 |
Date | 07 December 2011 |
Creators | Poly, Guillaume |
Publisher | Université Paris-Est |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0023 seconds