Ureases são enzimas níquel-dependentes que catalisam a hidrólise da ureia em amônia e dióxido de carbono. Além disso, apresentam diversas propriedades independentes da catálise, sendo consideradas proteínas moonlighting. São amplamente distribuídas na natureza, sendo encontradas em bactérias, arqueas, plantas e fungos, podendo se organizar em unidades funcionais compostas por uma, duas ou três subunidades. Sua ativação, que envolve a passagem da enzima de sua forma apo-urease a sua forma holourease, requer pelo menos três proteínas acessórias. Parte de suas propriedades não-catalíticas é associada à liberação de peptídeos internos da proteína nativa. Nesse contexto, a presente tese se dedicou ao estudo de diferentes aspectos da biologia estrutural de ureases. Ao elaborar uma narrativa filogenética, envolvendo varredura de bancos de dados em larga escala e diferentes algoritmos de reconstrução de árvores, foi possível propor uma rota evolutiva indicando a transição de três subunidades para uma única unidade funcional, sem passar por intermediários de duas cadeias. Quanto ao seu processo de ativação, por meio de múltiplos cálculos de atracamento baseados em dados experimentais prévios (especialmente SAXS), foram propostas estruturas para suas diferentes etapas, em resolução atomística. Finalmente, o comportamento dinâmico de diferentes peptídeos derivados de urease foram analisados computacionalmente por meio de simulações de longa duração (500 ns) e associados a outros dados obtidos in vitro, permitindo justificar efeitos diferenciais obtidos na aplicação destes peptídeos. De maneira geral, o trabalho empregou técnicas computacionais à análise de ureases, fornecendo bases para futuros estudos de suas propriedades, sejam catalíticas ou não, incluindo sua aplicação biotecnológica. / Ureases are nickel-dependent enzymes that catalyze the hydrolysis of urea into ammonia and carbon dioxide. They have many catalysis-independent properties, being considered moonlighting proteins. Ureases are found in bacteria, archaea, plants, and fungi, and may be organized in functional units composed by one, two, or three subunits. Their activation, involving the transition from apo to holourease, requires at least three accessory proteins. Some of their non-catalytic properties are related to the release of internal peptides from the native protein. In this context, this thesis was developed upon the study of different aspects of urease structural biology. By phylogenetical reconstruction, employing large-scale databank scans and different tree-building algorithms, we were able to propose an evolutionary route by which the transition from three to one functional subunits was possible, with no need for a two-chained intermediate. Regarding the activation mechanism, we have proposed structural models for the oligomeric intermediates of the process by multiple docking calculations, at atomistic resolution, based on previous experimental data (especially SAXS). Additionally, the dynamical behavior of different ureasederived peptides was analyzed by computational simulations at large time scales (500 ns) and correlated to in vitro results, allowing us to explain the variable effects observed after their application on test systems. In short, in this work we have employed computational techniques to the analysis of urease, providing working grounds for further studies of this enzyme and its properties (catalytical or not), including its biotechnological applicability.
Identifer | oai:union.ndltd.org:IBICT/oai:www.lume.ufrgs.br:10183/96806 |
Date | January 2014 |
Creators | Braun, Rodrigo Ligabue |
Contributors | Verli, Hugo, Carlini, Celia Regina Ribeiro da Silva |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0038 seconds