Return to search

Machine Learning Driven Simulation in the Automotive Industry

The current thesis investigates data-driven simulation decision-making with field-quality consumer data. This is accomplished by outlining the benefits and uses of combining machine learning and simulation in the literature and by locating barriers to the use of machine learning (ML) in the simulation subsystems at a case study organization. Additionally, an implementation is carried out to demonstrate how Scania departments can use this technology to analyze their current data and produce results that support the exploration of the simulation space and the identification of potential design issues so that preventative measures can be taken during concept development. The thesis' findings provide an overview of the literature on the relationship between machine learning and simulation technologies, as well as limitations of using machine learning in simulation systems at large scale manufacturing organizations. Support vector machines, logistic regression, and Random Forest classifiers are used to demonstrate one possible use of machine learning in simulation.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-486946
Date January 2022
CreatorsRam Seshadri, Aravind
PublisherUppsala universitet, Institutionen för informationsteknologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationIT ; 22 126

Page generated in 0.0041 seconds