Return to search

Solution synthesis and actuation of magnetic nanostructures

Viele neue Technologien basieren auf Materialien die im Nanometerbereich strukturiert sind. Damit diese im großen Maßstab zur Anwendung gebracht werden können, werden Methoden benötigt solche nanostrukturierten Materialien kostengünstig zu produzieren. Magnetische Felder sind eine vielversprechende Möglichkeit die Anordnung von Nanostrukturen zu beeinflussen. In dieser Doktorarbeit wird eine Methode für die Herstellung magnetischer Nanostrukturen in Lösung präsentiert. Die Herstellungsmethode ist skalierbar und kostengünstig. Die synthetisierten Strukturen haben zufällige Formen und bewegen sich unter dem Einfluss eines externen rotierenden Magnetfelds im rechten Winkel zu der Ebene in der das Magnetfeld rotiert. Die dimensionslosen Geschwindigkeiten dieser zufällig geformten Propeller sind vergleichbar mit jenen früher publizierter helikaler Propeller. Das beobachtete Verhältnis zwischen Anregungsfrequenz und Propellergeschwindigkeit konnte mittels eines Drehmomentgleichgewichts verstanden werden. Dieses vertiefte Verständnis der Propellerbewegung ermöglichte eine theoretische Studie zur Kontrolle von Propellerschwärmen. Hierbei werden mehrere Propeller entlang frei wählbarer Bahnen gesteuert. Eine Kontrollstrategie wurde gefunden, welche die magnetische Feldstärke minimiert, die zum Erreichen einer vorgegebenen Genauigkeit nötig ist. Schließlich wurde das kollektive Verhalten von großen Mengen von magnetischen Propellern untersucht. Sowohl zufällig geformte als auch helikale Propeller bilden Zusammenballungen, die im dynamischen Gleichgewicht kreisförmig sind und langsam rotieren. Gleichförmig helikale Propeller ordnen sich in diesen Zusammenballungen hexagonal an. Der Vergleich zwischen Beobachtungen und Simulationen zeigte, dass hydrodynamische Interaktionen für die Bildung der Zusammenballungen nicht notwendig sind, aber dazu führen dass sich eine Randregion bildet, in der die Winkelgeschwindigkeit der Propeller erhöht ist. / New ways to cheaply produce and assemble useful micro- and nanostructures are needed to facilitate their deployment in novel technologies. Magnetic fields are a promising possibility to guide the assembly of nanostructures. This thesis presents a method to synthesize magnetic nanostructures in solution which can be actuated by external rotating magnetic fields. The synthesis method is scalable and can cheaply produce randomly shaped magnetic nanostructures in large quantities. The synthesized structures have random shapes and were observed to propel under the influence of an external magnetic field, perpendicular to the plane in which the external field is rotating. The random shapes move with dimensionless speeds that are comparable to those of previously published, nanofabricated propellers with controlled helical geometries. The observed relationship between actuating frequency and propulsion speed could be understood with a simple torque balance model. This improved understanding opened the door for a theoretical study on swarm control, i.e. the steering of several magnetic propellers along independent trajectories. A particular control strategy (critical control) was found, that minimizes the required magnetic field strength needed to achieve a certain control precision. Finally, the collective behavior of large numbers of propellers, moving upwards against gravity and towards a glass surface, was investigated. Both randomly shaped, as well as nanofabricated propellers were observed to form clusters which are circular and rotate slowly in dynamic equilibrium. The nanofabricated propellers displayed hexagonal ordering inside the clusters. Comparing the observed cluster dynamics to simulations revealed that hydrodynamic interactions between the propellers are not necessary for cluster formation, but lead to the formation of a boundary layer at the cluster edge, in which the angular velocity of the propellers is higher than in the rest of the rotating cluster.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/17806
Date18 February 2015
CreatorsVach, Peter
ContributorsFratzl, Peter, Stark, Holger, Rabe, Jürgen P.
PublisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät
Source SetsHumboldt University of Berlin
LanguageEnglish
Detected LanguageEnglish
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf
RightsNamensnennung - Keine kommerzielle Nutzung - Keine Bearbeitung, http://creativecommons.org/licenses/by-nc-nd/3.0/de/

Page generated in 0.0333 seconds