Dans un contexte de diminution des émissions polluantes émises par les moteurs à combustion interne, le secteur des transports assiste à une amélioration des motorisations mais également à une diversification des carburants pour l’automobile. L’utilisation de ces différents carburants entraîne souvent un impact sur les performances de la combustion. Dans le cas du moteur à allumage commandé, la performance dépend du dégagement d’énergie, image de la vitesse de la combustion, soit du front de flamme consommant le mélange air-carburant. Or toute flamme en expansion est théoriquement soumise à des effets de courbure et de cisaillement, toutes deux contributions de l’étirement. La réponse à l’étirement étant propre à chaque type de mélange air-carburant (lié au carburant proprement dit, à la richesse du mélange, à la dilution …), ce travail de thèse est centré sur la compréhension de l’impact de l’étirement sur les performances des carburants dans les moteurs à allumage commandé. Pour cela, différents mélanges air-carburant similaires du point de vue des propriétés thermodynamiques et des vitesses fondamentales de combustion laminaire mais avec des sensibilités à l’étirement différentes ont été sélectionnés. Ces mélanges ont ensuite été étudiés dans différentes configurations expérimentales et à l’aide de différentes techniques de mesure: moteur monocylindre opaque et à accès optiques, chambre sphérique de combustion turbulente. Les résultats montrent que les propriétés de sensibilités à l’étirement déterminées en régime laminaire comme la longueur de Markstein et le nombre de Lewis sont indicatrices du comportement des mélanges en combustion turbulente, comme dans la chambre de combustion caractéristique des moteurs à allumage commandé, et sont des paramètres à prendre en considération afin de prédire les performances plus globales de ces carburants que ce soit expérimentalement qu’en simulation. / In a context of decreasing pollutant emissions, the transport sector is facing an improvement of engine concept as well as a fuel diversification. The use of these different fuels often involves an impact on the combustion performance itself. In the case of Spark ignition engine, the efficiency is a function of the released heat, image of the combustion speed, i.e. the flame front speed consuming the air-fuel mixture. It is well known that every expanding flame is submitted to flame curvature and strain rate which are both contributors to flame stretch. As the answer of each air-fuel mixture (i.e. the fuel itself, the equivalence ratio, the dilution …) is different to flame stretch, the objective of this work is to understand flame stretch impact on fuel performance in Spark-Ignition engines. To achieve this goal, different fuel-air mixtures with similar unstretched laminar burning speed and thermodynamic properties but different responses to stretch were selected. Those mixtures were then studied with different experimental devices with different measurement techniques: single-cylinder metallic and optical engines, turbulent combustion spherical vessel. Results show that flame stretch sensitivity properties such as Markstein length and Lewis number, determined in laminar combustion regime, are relevant parameters to describe the flame propagation in turbulent combustion as in the combustion chamber of the Spark-Ignition engine and need to be taken into consideration to evaluate global performance of these fuels, experimentally and also in modeling simulation.
Identifer | oai:union.ndltd.org:theses.fr/2014ORLE2038 |
Date | 12 December 2014 |
Creators | Brequigny, Pierre |
Contributors | Orléans, Mounaïm-Rousselle, Christine, Halter, Fabien |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds