La navigation spatiale peut être subdivisée en deux processus: la construction d’une représentation mentale de l’espace à partir de l’exploration de l’environnement d'une part, et l’utilisation de cette représentation de façon à produire le trajet le plus adapté pour rejoindre le lieu souhaité d'autre part. Lors de l’exploration de l’environnement, des informations externes et des informations de mouvement propre (i.e. vestibulaires et proprioceptives) sont combinées pour former la carte cognitive. Depuis longtemps des études suggèrent que le cervelet participe à la navigation spatiale mais son rôle a souvent été confiné à l’exécution motrice. Notre équipe a étudié des souris mutantes L7-PKCI présentant un déficit de plasticité synaptique de type dépression à long terme (DLT) au niveau des synapses entre fibres parallèles et cellules de Purkinje du cortex cérébelleux. Ces travaux ont montré que les souris présentent à la fois un déficit dans l'optimisation de la trajectoire mais également dans le maintien de la carte cognitive formée dans l'hippocampe. En effet, les propriétés de décharge des cellules de lieu de l'hippocampe sont affectées chez ces souris exclusivement lorsque celles-ci doivent naviguer en se reposant sur les informations provenant de leur mouvement propre, c'est à dire quand elles explorent l'environnement dans le noir. A ces mêmes synapses, une plasticité de type potentialisation à long terme (PLT) a été observée et permet (avec la DLT) la modulation bidirectionelle de l’efficacité synaptique. La plasticité bidirectionnelle est un processus clé dans les modèles théoriques de type « filtre adaptatif » de traitement de l’information par le cervelet. Selon ces modèles, l’absence de PLT ou DLT devrait affecter de façon similaire la plasticité bidirectionnelle et conduire ainsi à des déficits comparables. Pour tester cette hypothèse, nous avons étudié les conséquences fonctionnelles d’un déficit de type PLT au niveau de la même synapse entre fibre parallèle et cellule de Purkinje. Nous avons utilisé la lignée transgénique L7-PP2B, spécifiquement déficitaire pour cette plasticité.Malgré un léger déficit moteur révélé exclusivement sur le rotarod, les capacités de navigation des souris L7-PP2B ne sont pas affectées dans une tâche de navigation en labyrinthe aquatique de type piscine de Morris. Les propriétés des cellules de lieu de l’hippocampe des souris L7-PP2B ont ensuite été caractérisées lors de l’exploration d’une arène circulaire dans différentes conditions environnementales. Contrairement à celles des souris L7-PKCI, les propriétés des cellules de lieux des souris L7-PP2B ne sont pas affectées lorsque les souris ne peuvent utiliser que les informations de mouvement propre pour s’orienter, c'est à dire dans le noir. Par contre, les cellules de lieux des souris L7-PP2B présentent une instabilité en l’absence de toute manipulation d’indice environnemental, dans 23% des sessions d’enregistrement. Cette instabilité, absente chez les souris contrôles, se manifeste de façon imprévisible dans un environnement familier et est caractérisée par une rotation angulaire cohérente de l’ensemble des cellules de lieux enregistrées. Ces données suggèrent qu’en l’absence de PLT cérébelleuse la représentation spatiale de l’hippocampe n’est pas ancrée de façon stable aux indices externes proximaux. Ces résultats, associés à ceux des souris L7-PKCI indiquent que le cervelet contribue de manière complexe à la fois à la représentation spatiale hippocampique et aux capacités de navigation et que DLT et PLT jouent probablement des rôles différents dans ces processus. / Spatial navigation can be divided into two processes: building a spatial representation from the environment exploration and using this representation to produce an adapted trajectory toward a goal. During the environment exploration, external and self-motion information (i.e. vestibular and proprioceptive) are combined to form the spatial map. It has long been suggested that the cerebellum participates in spatial navigation but its role has often been confined to motor execution. Our team has studied L7-PKCI mice which lack a plasticity mechanism (long term depression (LTD)) at parallel fiber-Purkinje cell synapses in the cerebellar cortex. These works have shown that L7-PKCI mice present a deficit in trajectory optimization as well as in the maintenance of the cognitive map in the hippocampus. Indeed in these mice, the firing properties of hippocampal place cells are affected specifically when mice have to rely on self-motion information, i.e. when exploring the environment in the dark.A these same synapses, another type of plasticity (long term potentiation (LTP)) has been described, and allows (with LTD) the bidirectional modulation of the synaptic efficiency. Bidirectional plasticity is a key element of the ‘adaptive filter’ theoretical models of cerebellar information processing. According to these models, a lack of LTP or LTD should similarly affect bidirectional plasticity and result in comparable deficits. To test this prediction, we investigated the functional consequences of a deficit of LTP at parallel fiber-Purkinje cell synapses using the L7-PP2B mice model, specifically impaired for this plasticity.In spite of a mild motor adaptation deficit, revealed on the rotarod task, spatial learning of L7-PP2B mice was not impaired in the watermaze task. Hippocampal place cell properties of L7-PP2B mice were characterized during exploration of a circular arena, following different experimental manipulations. In contrast to mice lacking cerebellar LTD, place cells properties of L7-PP2B mice were not impaired when mice had to rely on self-motion cues, i.e. in the dark. Surprisingly, L7-PP2B place cells displayed instability in the absence of any proximal cue manipulation in 23 % of the recording sessions. This instability occurred in an unpredictable way in a familiar environment and was characterized each time by a coherent angular rotation of the whole set of recorded place cells. These data suggest that, in the absence of cerebellar LTP, hippocampal spatial representation cannot be reliably anchored to the proximal cue. These results along with those from L7PKCI mice, indicate that the cerebellum contributes to both hippocampal representation and subsequent navigation abilities and that LTP and LTD are likely to play different roles in these processes.
Identifer | oai:union.ndltd.org:theses.fr/2014PA066151 |
Date | 18 July 2014 |
Creators | Lefort, Julie |
Contributors | Paris 6, Rondi-Reig, Laure |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0022 seconds