Sustainability is one of the biggest goals of humankind in the new millennium. An increasing global demand on agricultural products stimulates agricultural expansion in Brazil, especially in the Southwestern Amazon, namely in the Cerrado and Amazon biomes. A better understanding of biogeochemical cycles and their influence on natural and agricultural systems is key to achieve environmental sustainability and improve agricultural efficiency. These biogeochemical cycles are driven by microbes, and the aim of this thesis was to correlate microbial functional group abundances with differences in carbon, nitrogen, and greenhouse gas cycles in response to land use changes in Southwestern Amazon soils. This work was performed at the University of São Paulo, Brazil, and at the University of Massachusetts Amherst, USA, while the candidate was enrolled in Ph.D. programs at both universities. The thesis is composed of five studies. The first study shows that land use change from Cerrado and forest to agriculture (soybean, Glycine max (L. Merrill), in succession with other crops) or pasture (Brachiaria brizantha (Hochst. ex A. Rich.) did not reduce soil microbial diversity but changed microbial structure. The second study, a physicochemical background for this land use conversion, describes the alteration of C and N stocks, soil chemical parameters, and microbiological parameters such as biomass, biological C stocks, and changes in the abundance of prokaryotes and fungi. In the third and fourth studies microcosm experiments depict how the agricultural change to soybean and Brachiaria alter the original microbial structure found in forest or cerrado. These studies focused on abundances of key biogeochemical genes (amoA, nirK, nirS, norB, nosZ, mcrA, and pmoA) and correlated gene copy abundances with C, N, and GHG measurements. In the fifth study, in situ soil surveys and GHG samplings were used to characterize the changes from forest to pasture (B. brizantha, 25 years) or soybean crop system (for 2 years or 25 years in succession). We found correlations between genes and processes, indicating that gene abundances provide important microbial information for the understanding of the targeted biogeochemical cycles. Land use, rather than plant species, promotes alterations in microbial gene abundances and processes. During the survey period, forest exhibited higher microbial activity, resulting in higher nitrate availability and N2O emissions. These processes were correlated with higher abundances of process related genes. Nitrate and N2O emissions were lower in agricultural and pasture soils. CO2 emission was higher in the two-year-old soybean plot. The forest and two-year-old soybean plots acted as a sink for CH4, while the pasture plots represented a source of it. The results validated the use of gene abundance determination as a valuable tool to better understand C, N, and GHG processes. The genes nirK, nosZ, and 16S rRNA presented the best correlations with the processes. A larger temporal and spatial analysis is needed to infer statements on the processes dynamics due to land use change. For the first time gene abundance measurements were used to integrate the C, N and GHG cycles, giving insights into land use changes in Southwestern Amazon / Sustentabilidade é um dos maiores objetivos da humanidade no novo milênio. Uma demanda crescente por produtos agrícolas tem estimulado a expansão agrícola no Brasil, especialmente no Sudoeste da Amazônia, nos biomas Cerrado e Amazônia. Um melhor entendimento dos ciclos biogeoquímicos e suas influências em sistemas naturais e agrícolas é chave para se alcançar sustentabilidade ambiental e aumentar eficiência agrícola. Esses ciclos biogeoquímicos são guiados por microrganismos, e o objetivo dessa tese foi correlacionar abundância de grupos funcionais de microrganismos com carbono, nitrogênio e gases de efeito estufa (GEE) em resposta a mudança do uso da terra em solos do sudoeste da Amazônia. Esse trabalho foi realizado na Universidade de São Paulo e na Universidade de Massachusetts Amherst enquanto o doutorando esteve matriculado nas duas universidades. A tese é composta de cinco estudos. O primeiro estudo mostra que a mudança no uso da terra de Cerrado e floresta para agricultura (soja, Glycine max (L. Merrill), em sucessão com outros cultivos) ou pastagem (Brachiaria brizantha (Hochst. ex A. Rich.) não reduz diversidade microbiana, mas muda sua estrutura. O segundo estudo descreve as alterações nos estoques de C, N, parâmetros químicos e microbiológicos da conversão de Cerrado para agricultura e pastagem. No terceiro e no quarto estudos, microcosmos foram usados para avaliar a influência de soja e braquiária na microbiota dos solos. Genes chaves dos processos biogeoquímicos (amoA, nirK, nirS, norB, nosZ, mcrA, e pmoA) foram quantificados e correlacionados com C, N e GEE. No quinto estudo, coletas in situ de solo e gases foram usadss para caracterizar a mudança do uso da terra de floresta para pastagem (braquiária, 25 anos) e para agricultura (soja, segundo ano, e soja, 25 anos, em sucessão com outras culturas). Correlações entre genes e processos foram encontradas, indicando que abundância gênica fornece importantes informações para o entendimento dos ciclos biogeoquímicos. Mudança no uso da terra como um todo, mais do que a mudança de vegetação, promove as alterações na abundância gênica e processos do solo. Durante o período de coleta, floresta exibiu maior atividade microbiana, resultando em maior disponibilidade de nitrato e emissão de N2O. Esses processos correlacionam com maior abundância dos genes relacionados aos processos. Quantidades de nitrato e N2O foram menores em agricultura e pastagem. As emissões de CO2 foram maiores na área de soja de segundo ano. Os solos de floresta e soja de segundo ano se mostraram como drenos de metano, enquanto que a pastagem foi uma fonte de emissão. Os resultados validam o uso de abundância gênica como uma técnica valiosa para um melhor entendimento dos ciclos do C, N e GEE. Os genes nirK, nosZ, e 16S rRNA apresentaram as melhores correlações com os processos. Uma análise temporal e espacial mais abrangente é necessária para generalizações sobre a dinâmica dos processos na região estudada. Pela primeira vez abundância gênica foi usada para integrar os ciclos do C, N e GEE, colaborando para um melhor entendimento dos processos relacionados à mudança no uso da terra no sudoeste da Amazônia
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-15082012-091918 |
Date | 16 December 2011 |
Creators | Lammel, Daniel Renato |
Contributors | Cerri, Carlos Clemente, Nusslein, Klaus Rudolf |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | English |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0033 seconds