Dans la première partie de ce travail de thèse, nous nous sommes intéressé à l’étude de l’anisotropie magnétique au sein de complexes mononucléaires de Ni(II) et de Co(II) pentacoordinés de géométrie allant de la pyramide à base carrée jusqu’à la bipyramide trigonale. Pour les complexes mononucléaires, nous avons montré que pour une géométrie donnée, la nature de l’ion métallique a une influence importante sur l’anisotropie magnétique.Nous avons étudié l’effet de la géométrie pour un même ion métallique. Dans le cas d’une géométrie bipyramidale trigonale (symétrie C3v), nous avons montré que le complexe de Co(II) possède un axe facile de l’aimantation et donc un blocage de l’aimantation qui conduisent à l’ouverture d’un cycle d’hystérèse à basse température. Ce type de complexe peut donc être utilisé pour le stockage de l’information. Dans la deuxième partie du travail, nous avons étudié les propriétés magnétiques de complexes binucléaires. Un complexe binucléaire de Co(II) pontés par deux Cl- présente un faible couplage ferromagnétique et un blocage de l’aimantation.Enfin, l’autre aspect de ce travail est de réaliser une molécule binucléaire où deux ions anisotropes, chacun possédant un axe facile de l’aimantation, soient faiblement couplés de manière antiferromagnétique. Pour ce faire, nous avons étudié des composés avec des ligands de type cryptant où la géométrie autour des Co(II) est bipyramide trigonale. Nous avons trouvé qu’avec un ligand pontant de type Cl- ou Br-, l’interaction d’échange est beaucoup plus importante que l’anisotropie locale des ions Co(II) conduisant à un comportement magnétique où les ions perdent leur caractère local. Ce travail ouvre la perspective de synthétiser le même type de complexes mais avec des ponts de plus grande taille pour diminuer l’intensité du couplage antiferromagnétique. / In the first part of this thesis, we studied the magnetic anisotropy of pentacoordinated mononuclear Ni(II) and Co(II) complexes possessing geometries from square pyramid to trigonal bipyramid. We have shown that, for a given geometry, the metal ion nature has an important influence on the magnetic anisotropy.Then, we studied for a given metal ion the effect of geometry on its magnetic anisotropy. In the case of a trigonal bipyramidal geometry (C3v symmetry), we showed that Co(II) has an Ising type anisotropy (easy axis of magnetization) and thus a blocking of magnetization that leads to an opening of a hysteresis cycle at low temperature. This type of complexes can be used for storing data albeit at low temperature.In the second part of the work, we studied the magnetic properties of binuclear complexes. A binuclear Co(II) complex bridged by two Cl- has a weak ferromagnetic coupling and a blocking of its magnetization.Finally, another aspect of this work was to design binuclear complexes, where two anisotropic ions having each one an easy axis of magnetization, are weakly antiferromagnetically coupled. To do this, we have studied compounds with cryptand ligands where the geometry around the Co (II) is trigonal bipyramid. We found that with a Cl- or Br- bridging ligand, the exchange interaction is much more important than the local anisotropy of Co(II) ions leading to a magnetic behavior where the ions lose their local character. This work opens up prospects for synthesizing the same type of complex but with larger bridges to decrease the intensity of the antiferromagnetic coupling.
Identifer | oai:union.ndltd.org:theses.fr/2015PA112071 |
Date | 18 May 2015 |
Creators | Zakhia, Georges |
Contributors | Paris 11, École Doctorale des Sciences et de Technologie (Beyrouth), Mallah, Talal, Naoufal, Daoud |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image, StillImage |
Page generated in 0.0027 seconds