Return to search

Semi-riemannian noncommutative geometry, gauge theory, and the standard model of particle physics / Géométrie non-commutative semi-riemannienne, théorie de jauge, et le modèle standard de la physique des particules

Dans cette thèse, nous nous intéressons à la géométrie non-commutative - aux triplets spectraux en particulier - comme moyen d'unifier gravitation et modèle standard de la physique des particules. Des triplets spectraux permettant une telle unification on déjà été construits dans le cas des variétés riemanniennes. Il s'agit donc ici de généraliser au cas des variétés semi-riemanniennes, et d'appliquer ensuite au cas lorentzien, qui est d'une importance particulière en physique. C'est ce que nous faisons dans la première partie de la thèse, ou le passage du cas riemannien au cas semi-riemannien nous oblige à nous intéresser à des espaces vectoriels de signatures indéfinies (et non définies positives), dits espaces de Krein. Ceci est une conséquence de notre étude des algèbres de Clifford indéfinies et des structures Spin sur variétés semi-riemanniennes. Nous généralisons ensuite les triplets spectraux en triplets dits indéfinis en conséquence de cela. Dans la deuxième partie de la thèse, nous appliquons le formalisme des formes différentielles non-commutatives à nos triplets indéfinis pour formuler des théories de jauge non-commutatives sur espace-temps lorentzien. Nous montrons ensuite comment obtenir le modèle standard. / The subject of this thesis is noncommutative geometry - more specifically spectral triples - and how it can be used to unify General Relativity with the Standard Model of particle physics. This unification has already been achieved with spectral triples for Riemannian manifolds. The main concern of this thesis is to generalize this construction to semi-Riemannian manifolds generally, and Lorentzian manifolds in particular. The first half of this thesis will thus be dedicated to the transition from Riemannian to semi-Riemannian manifolds. This entails a study of Clifford algebras for indefinite vector spaces and Spin structures on semi-Riemannian manifolds. An important consequence of this is the introduction of complex vector spaces of indefinite signature. These are the so-called Krein spaces, which will enable us to generalize spectral triples to indefinite spectral triples. In the second half of this thesis, we will apply the formalism of noncommutative differential forms to indefinite spectral triples to construct noncommutative gauge theories on Lorentzian spacetimes. We will then demonstrate how to recover the Standard Model.

Identiferoai:union.ndltd.org:theses.fr/2018SORUS413
Date14 September 2018
CreatorsBizi, Nadir
ContributorsSorbonne université, Brouder, Christian, Masson, Thierry
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Image

Page generated in 0.0185 seconds