Submitted by Jean Medeiros (jeanletras@uepb.edu.br) on 2016-03-08T12:13:27Z
No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
PDF - Stanley Borges de Oliveira.pdf: 3340773 bytes, checksum: de816c79a26915787dd60d54ce472134 (MD5) / Approved for entry into archive by Secta BC (secta.csu.bc@uepb.edu.br) on 2016-06-13T20:37:16Z (GMT) No. of bitstreams: 2
PDF - Stanley Borges de Oliveira.pdf: 3340773 bytes, checksum: de816c79a26915787dd60d54ce472134 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2016-07-21T20:49:44Z (GMT). No. of bitstreams: 2
PDF - Stanley Borges de Oliveira.pdf: 3340773 bytes, checksum: de816c79a26915787dd60d54ce472134 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2014-07-25 / In the presentdissertation we study complex numbers with a special attention to the geometric
aspect. Many geometric problems can be answered using the algebraic notation of
complex numbers with their rich geometric interpretations with relative ease. The geometric
aspects of the complex numbers are often not taught in high school, not even the trigonometric
form (or polar form). Therefore, students do not apply the knowledge of complex
numbers to solve geometric problems. In this paper we will approach the complex numbers
applied to solve both geometric as algebraic problems, making relate geometric concepts
with algebraic concepts of complex numbers, and launched as a proposal to develop the
ability of students to relate mathematical content offering opportunity of even better fix the
concepts of complex numbers. / No presente trabalho de conclusão de curso trataremos sobre os números complexos com
uma atenção especial ao seu aspecto geométrico. Alguns problemas geométricos podem ser
solucionados usando a notação algébrica dos números complexos com ajuda das suas ricas
interpretações geométricas com certa facilidade. O aspecto geométrico dos números complexos
muitas vezes não é ensinado no ensino médio, nem sequer a forma trigonométrica
(ou polar). Por essa razão, os alunos não aplicam os conhecimentos de números complexos
para resolver problemas geométricos. Em muitos casos, essa abordagem vem a
facilitar a resolução das soluções. Neste trabalho faremos uma abordagem dos números
complexos aplicados para resolver problemas, ora geométricos, ora algébricos, fazendo relacionar
os conceitos geométricos com os conceitos algébricos dos números complexos e vice
versa, e lançamos como proposta para desenvolver a habilidade dos alunos em relacionar os
conteúdos matemáticos oferecendo oportunidade dos mesmo fixarem melhor conceitos dos
números complexos.
Identifer | oai:union.ndltd.org:IBICT/oai:tede.bc.uepb.edu.br:tede/2340 |
Date | 25 July 2014 |
Creators | Oliveira, Stanley Borges de |
Contributors | Louredo, Aldo Trajano, Silva, Diogo Diniz Pereira da Silva e, Vieira, Vandenberg Lopes |
Publisher | Universidade Estadual da Paraíba, Programa de Pós-Graduação Profissional em Matemática - PROFMAT, UEPB, Brasil, Pró-Reitoria de Pós-Graduação e Pesquisa - PRPGP |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UEPB, instname:Universidade Estadual da Paraíba, instacron:UEPB |
Rights | info:eu-repo/semantics/openAccess |
Relation | 3431666365534820249, 600, 600, 600, 524871450381110278, -240345818910352367 |
Page generated in 0.0023 seconds