Return to search

Confinement photonique extrêmement sub-longueur d'onde pour les lasers à cascade quantique térahertz

Les deux grands défis actuels pour l'optoélectronique térahertz (THz) sont d'une part, le besoin de miniaturiser les sources de rayonnement térahertz, et d'autre part, la nécessité d'améliorer leurs performances actuelles. Parmi les sources de rayonnement térahertz existantes, le laser à cascade quantique (QCL) est à ce jour le meilleur candidat pour remplir ces critères. Afin d'y parvenir, il faut cependant apporter des solutions aux verrous qui limitent la miniaturisation des QCLs THz. Le premier est d'ordre fondamental, et tient au fait que les dimensions des cavités photoniques usuelles sont soumises à la limite de diffraction. Le second verrou provient du fait que la recherche de compacité des sources se traduit généralement par la détérioration de leur puissance optique de sortie et de la directionnalité du faisceau laser. Une nouvelle famille de résonateurs THz métal - semiconducteur - métal (M-SC-M) est présentée de façon théorique et expérimentale. Ces dispositifs, inspirés des oscillateurs électroniques LC, ont permis d'atteindre un volume effectif record Veff=LxLyLz/λeff=5.10−6, où Lx,y,z sont les dimensions de la cavité et λeff est la longueur d'onde de résonance dans le cœur du résonateur (GaAs). Ces résonateurs hybrides photoniques-électroniques ont la particularité d'être libérés de la limite de diffraction dans les trois dimensions spatiales, et bénéficient pour la première fois de toutes les fonctionnalités habituellement réservées aux dispositifs électroniques. Une application aux polaritons inter-sousbandes THz a permis d'obtenir des résultats à l'état de l'art, démontrant d'une part que ces résonateurs hybrides conservent leurs propriétés photoniques, et d'autre part qu'ils permettent un couplage lumière-matière fort. En parallèle de ce travail, la faisabilité d'un QCL THz avec une région active extrêmement fine est démontrée expérimentalement. Une étude systématique des caractéristiques du laser en fonction de l'épaisseur de la région active (Lz) a permis la réduction de Lz=10 μm (≈λeff/2,7) jusqu'à la valeur record de Lz=1,75 μm (≈ λeff/13) dans une cavité Fabry-Pérot M-SC-M. Malgré l'augmentation des pertes optiques, l'effet laser est obtenu au-dessus de la température de l'azote liquide (78 K) pour la région active la plus fine. Ces résultats sont très encourageants pour le développement de régions actives plus performantes, et permettent d'envisager le développement de micro-cavités lasers avec des volumes effectifs extrêmement sub-longueur d'onde. Les perspectives de ce travail de thèse s'étendent de l'électrodynamique quantique en cavité au nanolaser. Les applications potentielles varient énormément en fonction de la configuration des résonateurs hybrides. Ils peuvent être utilisés comme des éléments passifs pour la détection, ou encore comme des éléments actifs tels que des antennes. Enfin, l'utilisation d'une région active fine en combinaison avec un résonateur hybride devrait permettre d'obtenir un QCL THz ultra-compact libéré de la limite de diffraction, tout en introduisant pour la première fois la possibilité d'accorder la fréquence du laser en adaptant l'impédance complexe équivalente de la combinaison d'éléments LC.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00943200
Date12 December 2013
CreatorsStrupiechonski, Élodie
PublisherUniversité Paris Sud - Paris XI
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.002 seconds