• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Confinement photonique extrêmement sub-longueur d'onde pour les lasers à cascade quantique térahertz / Extreme subwavelength confinement for terahertz quantum cascade lasers

Strupiechonski, Élodie 18 December 2013 (has links)
Les deux grands défis actuels pour l’optoélectronique térahertz (THz) sont d’une part, le besoin de miniaturiser les sources de rayonnement térahertz, et d’autre part, la nécessité d’améliorer leurs performances actuelles. Parmi les sources de rayonnement térahertz existantes, le laser à cascade quantique (QCL) est à ce jour le meilleur candidat pour remplir ces critères. Afin d’y parvenir, il faut cependant apporter des solutions aux verrous qui limitent la miniaturisation des QCLs THz. Le premier est d’ordre fondamental, et tient au fait que les dimensions des cavités photoniques usuelles sont soumises à la limite de diffraction. Le second verrou provient du fait que la recherche de compacité des sources se traduit généralement par la détérioration de leur puissance optique de sortie et de la directionnalité du faisceau laser. Une nouvelle famille de résonateurs THz métal - semiconducteur - métal (M-SC-M) est présentée de façon théorique et expérimentale. Ces dispositifs, inspirés des oscillateurs électroniques LC, ont permis d’atteindre un volume effectif record Veff=LxLyLz/λeff=5.10−6, où Lx,y,z sont les dimensions de la cavité et λeff est la longueur d’onde de résonance dans le cœur du résonateur (GaAs). Ces résonateurs hybrides photoniques-électroniques ont la particularité d’être libérés de la limite de diffraction dans les trois dimensions spatiales, et bénéficient pour la première fois de toutes les fonctionnalités habituellement réservées aux dispositifs électroniques. Une application aux polaritons inter-sousbandes THz a permis d’obtenir des résultats à l’état de l’art, démontrant d’une part que ces résonateurs hybrides conservent leurs propriétés photoniques, et d’autre part qu’ils permettent un couplage lumière-matière fort. En parallèle de ce travail, la faisabilité d’un QCL THz avec une région active extrêmement fine est démontrée expérimentalement. Une étude systématique des caractéristiques du laser en fonction de l’épaisseur de la région active (Lz) a permis la réduction de Lz=10 μm (≈λeff/2,7) jusqu’à la valeur record de Lz=1,75 μm (≈ λeff/13) dans une cavité Fabry-Pérot M-SC-M. Malgré l’augmentation des pertes optiques, l’effet laser est obtenu au-dessus de la température de l’azote liquide (78 K) pour la région active la plus fine. Ces résultats sont très encourageants pour le développement de régions actives plus performantes, et permettent d’envisager le développement de micro-cavités lasers avec des volumes effectifs extrêmement sub-longueur d’onde. Les perspectives de ce travail de thèse s’étendent de l’électrodynamique quantique en cavité au nanolaser. Les applications potentielles varient énormément en fonction de la configuration des résonateurs hybrides. Ils peuvent être utilisés comme des éléments passifs pour la détection, ou encore comme des éléments actifs tels que des antennes. Enfin, l’utilisation d’une région active fine en combinaison avec un résonateur hybride devrait permettre d’obtenir un QCL THz ultra-compact libéré de la limite de diffraction, tout en introduisant pour la première fois la possibilité d’accorder la fréquence du laser en adaptant l’impédance complexe équivalente de la combinaison d’éléments LC. / The development of terahertz (THz) optoelectronics faces two major challenges: first, a need for miniaturization of the existing radiative sources, and second, an improvement of their performances. Amongst the current sources of THz radiation, quantum cascade lasers (QCLs) represent to date the best candidates to match these two requirements. The integration of compact sources necessarily results in decreased optical output power and laser beam directionality. Therefore, a considerable amelioration of the active region performances must be achieved in parallel with the miniaturization of the dimensions of the photonic cavity. Because the latter are subject to the diffraction limit, which imposes on at least one dimension to be of the order of the effective half wavelength, further miniaturization of photonic devices requires a new approach. In this manuscript, a new class of metal-semiconductor-metal (M-SC-M) THz resonators is presented, both theoretically and experimentally. These devices, inspired by electronic LC resonators, allow to achieve a record effective volume Veff =LxLyLz/λeff =5.10-6, where Lx,y,z are the cavity dimensions and λeff is the effective wavelength resonance inside of the resonator core (GaAs). These devices are intrinsically free from the diffraction limit in the three spatial dimensions, and present the typical functionalities which are usually found only in a resonant electronic circuit. In order to demonstrate that their photonic properties are preserved, these devices have been successfully applied to THz intersubband polariton, demonstrating at the same time that they can be used for strong light-matter coupling. In parallel to this work, the feasibility of a THz QCL operating at λ=100 microns with an extremely thin active region is demonstrated experimentally. A systematic study of the laser characteristics for different thicknesses of the active region (Lz ) resulted in the reduction of Lz = 10 microns (≈λeff/2.7) down to the record value of Lz = 1.75 microns (≈λeff/13) in a M-SC-M Fabry-Perot waveguide. Despite a strong increase in optical losses, lasing is maintained above liquid nitrogen temperature (78 K) in the device with thinnest active region. This unexpected behavior is attributed to the existence of a large fraction of the current flowing through the active region at laser threshold being non-radiative. These results are very promising for future developments of efficient THz QCL active regions, as well as for fabrication of microcavity lasers with extremely low effective volumes. The perspectives of this work extend from cavity quantum electrodynamics to the development of a nanolasers. Potential applications of hybrid resonators can span over a broad range, depending on the chosen configuration. They can be used as passive elements for detection, as well as active elements such as antennas. Finally, the use of a thin active region in combination with an optimized version of these hybrid resonators should allow for the realization of an ultra-compact THz QCL free from the diffraction limit, with the possibility of fine tuning the laser frequency by adapting the equivalent complex impedance combination of the LC elements.
2

Confinement photonique extrêmement sub-longueur d'onde pour les lasers à cascade quantique térahertz

Strupiechonski, Élodie 12 December 2013 (has links) (PDF)
Les deux grands défis actuels pour l'optoélectronique térahertz (THz) sont d'une part, le besoin de miniaturiser les sources de rayonnement térahertz, et d'autre part, la nécessité d'améliorer leurs performances actuelles. Parmi les sources de rayonnement térahertz existantes, le laser à cascade quantique (QCL) est à ce jour le meilleur candidat pour remplir ces critères. Afin d'y parvenir, il faut cependant apporter des solutions aux verrous qui limitent la miniaturisation des QCLs THz. Le premier est d'ordre fondamental, et tient au fait que les dimensions des cavités photoniques usuelles sont soumises à la limite de diffraction. Le second verrou provient du fait que la recherche de compacité des sources se traduit généralement par la détérioration de leur puissance optique de sortie et de la directionnalité du faisceau laser. Une nouvelle famille de résonateurs THz métal - semiconducteur - métal (M-SC-M) est présentée de façon théorique et expérimentale. Ces dispositifs, inspirés des oscillateurs électroniques LC, ont permis d'atteindre un volume effectif record Veff=LxLyLz/λeff=5.10−6, où Lx,y,z sont les dimensions de la cavité et λeff est la longueur d'onde de résonance dans le cœur du résonateur (GaAs). Ces résonateurs hybrides photoniques-électroniques ont la particularité d'être libérés de la limite de diffraction dans les trois dimensions spatiales, et bénéficient pour la première fois de toutes les fonctionnalités habituellement réservées aux dispositifs électroniques. Une application aux polaritons inter-sousbandes THz a permis d'obtenir des résultats à l'état de l'art, démontrant d'une part que ces résonateurs hybrides conservent leurs propriétés photoniques, et d'autre part qu'ils permettent un couplage lumière-matière fort. En parallèle de ce travail, la faisabilité d'un QCL THz avec une région active extrêmement fine est démontrée expérimentalement. Une étude systématique des caractéristiques du laser en fonction de l'épaisseur de la région active (Lz) a permis la réduction de Lz=10 μm (≈λeff/2,7) jusqu'à la valeur record de Lz=1,75 μm (≈ λeff/13) dans une cavité Fabry-Pérot M-SC-M. Malgré l'augmentation des pertes optiques, l'effet laser est obtenu au-dessus de la température de l'azote liquide (78 K) pour la région active la plus fine. Ces résultats sont très encourageants pour le développement de régions actives plus performantes, et permettent d'envisager le développement de micro-cavités lasers avec des volumes effectifs extrêmement sub-longueur d'onde. Les perspectives de ce travail de thèse s'étendent de l'électrodynamique quantique en cavité au nanolaser. Les applications potentielles varient énormément en fonction de la configuration des résonateurs hybrides. Ils peuvent être utilisés comme des éléments passifs pour la détection, ou encore comme des éléments actifs tels que des antennes. Enfin, l'utilisation d'une région active fine en combinaison avec un résonateur hybride devrait permettre d'obtenir un QCL THz ultra-compact libéré de la limite de diffraction, tout en introduisant pour la première fois la possibilité d'accorder la fréquence du laser en adaptant l'impédance complexe équivalente de la combinaison d'éléments LC.
3

Exaltation multicorps du couplage lumière-matière

Delteil, Aymeric 20 December 2012 (has links) (PDF)
Ces travaux de thèse portent sur la conception, la réalisation et la caractérisation de dispositifs à base de puits quantiques semiconducteurs, fonctionnant dans les régimes de couplage fort et ultra-fort entre un mode de cavité et une excitation inter-sous-bande. Les états mixtes issus de ce couplage sont appelés polaritons inter-sous-bandes. Dans la première partie de la thèse, nous démontrons un dispositif électroluminescent dans lequel la branche polaritonique supérieure est peuplée à une énergie qui dépend de la tension appliquée au dispositif. De plus, nous mettons en évidence la relaxation des polaritons vers la branche inférieure par émission d'un phonon optique. Ce processus efficace permet d'atteindre un facteur d'occupation de la branche inférieure de l'ordre de 15%, et pourrait permettre d'obtenir de l'émission stimulée de polaritons. En augmentant la densité d'électrons dans le puits il est possible d'accéder au régime de couplage ultra-fort, caractérisé par une énergie de Rabi comparable avec celle de la transition inter-sous-bande. Pour cela la deuxième partie de la thèse est centrée sur l'étude de puits quantiques très dopés, avec plusieurs sous-bandes occupées. Plus particulièrement, nous réalisons une investigation théorique et expérimentale des interactions coulombiennes entre les plasmons inter-sous-bandes associés aux différentes transitions optiquement actives. Nous présentons un dispositif basé sur un puits quantique avec deux sous-bandes occupées, dans lequel une tension de grille contrôle la densité d'électrons dans le puits, ce qui modifie l'interaction entre les plasmons et donc la réponse optique. Pour des densités élevées, les forces d'oscillateur sont redistribuées en faveur de l'excitation de plus haute énergie. En vertu de ce phénomène, nous démontrons que la réponse optique d'un puits quantique ayant au moins trois sous-bandes occupées exhibe une unique résonance étroite, qui correspond à une excitation collective associant en phase toutes les transitions inter-sous-bandes. Cette excitation collective est observée en absorption et en électroluminescence. Lorsqu'on l'insère dans une microcavité, on atteint le régime de couplage ultra-fort avec une énergie de Rabi qui croît de façon monotone avec la densité d'électrons. Ce régime est démontré expérimentalement dans deux géométries de microcavité : planaire et zéro-dimensionnelle. Nos travaux montrent que l'interaction entre la lumière et la matière dans les puits quantiques dopés doit être pensée comme un processus purement collectif, régi par les phénomènes de cohérence induite par la charge.

Page generated in 0.0706 seconds