This project investigates the development of four different proofs of the law of quadratic reciprocity, in order to study the critical reasoning process that drives discovery in mathematics. We begin with an examination of the first proof of this law given by Gauss. We then describe Gauss’ fourth proof of this law based on Gauss sums, followed by a look at Eisenstein’s geometric simplification of Gauss’ third proof. Finally, we finish with an examination of one of the modern proofs of this theorem published in 1991 by Rousseau. Through this investigation we aim to analyze the different strategies used in the development of each of these proofs, and in the process gain a better understanding of this theorem.
Identifer | oai:union.ndltd.org:csusb.edu/oai:scholarworks.lib.csusb.edu:etd-1324 |
Date | 01 June 2016 |
Creators | Mittal, Nitish |
Publisher | CSUSB ScholarWorks |
Source Sets | California State University San Bernardino |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses, Projects, and Dissertations |
Page generated in 0.0018 seconds