Return to search

La théorie des courbes et des équations dans la Géométrie cartésienne : 1637-1661. [version déposée]

Dans cette thèse, nous étudions trois thèmes qui nous sont apparus centraux dans la Géométrie cartésienne : le problème de Pappus, le problème des tangentes et des normales, et un problème de gnomonique connu sous le nom de Problema Astronomicum. Par " Géométrie cartésienne ", nous entendons le corpus formé non seulement par la Géométrie, publiée en 1637, mais également par la Correspondance cartésienne et les deux éditions latines placées sous la direction de Frans van Schooten, publiées respectivement en 1649 et 1659-1661. Nous étudions la genèse de la théorie des courbes géométriques définies par des équations algébriques en particulier à travers les controverses qui apparaissent dans la correspondance cartésienne : la controverse avec Roberval sur le problème de Pappus, la controverse avec Fermat sur les tangentes, et la controverse avec Stampioen sur le Problema astronomicum. Nous souhaitons ainsi montrer que la Géométrie de la Correspondance constitue un moyen terme entre la Géométrie de 1637 et les éditions latines de 1649 et 1659-1661, mettant en lumière les enjeux et les difficultés du processus de création de la courbe algébrique comme objet. D'autre part, nous examinons la méthode des tangentes de Fermat et la méthode des normales de Descartes, en les rapportant à une matrice commune formée par le traité des Coniques d'Apollonius, plus précisément, le Livre I et le Livre V consacré à une à théorie des droites minimales.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00204125
Date19 September 2007
CreatorsMaronne, Sebastien
PublisherUniversité Paris-Diderot - Paris VII
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0029 seconds