Cloud computing and containerisation have experienced significant growth in recent years. With cloud providers requiring users to specify resource limits and requests, the need for performance and resource optimisation has emerged in the cloud computing domain. This thesis focuses on examining three autoscaling approaches in the Kubernetes container orchestrator: Hybrid Pod Autoscaler, Vertical Pod Autoscaler (VPA), and Horizontal Pod Autoscaler (HPA). To conduct the analysis, a production-grade microservice was deployed on a GKE cluster, replicating the workload of the host company Nordnet Bank AB, a pan-Nordic platform for savings investments. The main objective was to investigate the impact of the different autoscalers on the 50th and 99th percentile response times. The study also aimed to investigate whether a hybrid pod autoscaler, combining VPA and HPA, could outperform HPA and VPA in terms of response time and CPU usage. Additionally, the study aimed to identify the service metrics that an orchestrator can use to achieve response times similar to those obtained when resources are over-provisioned. The research findings indicate that response times varied significantly depending on the autoscaling strategy. While the 50th percentile response times remained consistent, the 99th percentile exhibited greater variation. Among the strategies, HPA demonstrated consistent performance, albeit with greater variability in the 99th percentile response times. The VPA strategy, in contrast, resulted in higher response times for both the 50th and 99th percentile compared to the baseline. The hybrid approach generally outperformed VPA in terms of response times while showing comparable performance to HPA, although with slightly greater variability. CPU usage patterns of the hybrid approach were more closely aligned with HPA than VPA. CPU usage and request rate were effectively used as service metrics for orchestrators in achieving acceptable 99th percentile response times, as demonstrated by both HPA and the hybrid approach. Nevertheless, these findings are contingent on the specific autoscaler configuration, microservice, and workload model used in this study and may not be universally applicable. / Cloud computing och containerisering har under de senaste åren haft en betydande tillväxt. I och med att molnleverantörer ger användare möjlighet att själva specificera resursgränser, har behovet för prestanda- och resursoptimering inom molntjänster blivit alltmer framträdande. Denna forskning fokuserar på att undersöka och utvärdera tre olika autoskalningsmetoder i Kubernetes containerorkestrator: Hybrid Pod Autoscaler, Vertical Pod Autoscaler (VPA) och Horizontal Pod Autoscaler (HPA).För att genomföra utvärderingen implementerades tre mikrotjänster i en GKE-klustermiljö. Arbetsbelastningen hos den svenska banken och handelsplattformen Nordnet Bank AB replikerades. Det primära syftet med studien var att undersöka hur de olika autoskalningsmetoderna påverkade svarstiden i den 50:e och 99:e percentilen. Utöver detta, syftade också till att undersöka om en hybrid pod autoscaler, som kombinerar både VPA och HPA, kunde överträffa de enskilda metoderna i svarstid och CPU-användning. Dessutom identifiera vilka mätvärden en orchestrator kan använda för att uppnå svarstider som liknar dem som uppnås när resurserna överdimensionerade. Resultaten från forskningen visar att svarstiderna varierade avsevärt beroende på vilken autoskalningsstrategi som användes. Medan svarstiderna för 50:e percentilen var relativt konsekventa, uppvisade 99:e percentilen större variation. HPA visade generellt sett jämn prestanda, men med en något större variation i 99:e percentilen av svarstider. Å andra sidan resulterade VPA i högre svarstider både för 50:e och 99:e percentilen. Hybridmetoden presterade generellt sett bättre än VPA när det gäller svarstider och visade liknande resultat som HPA, även om det fanns en något större variabilitet. Mönstret för CPU-användning för hybridmetoden låg närmare HPA än VPA. CPU-användning och förfrågningshastighet visade sig vara effektiva mätvärden för att uppnå acceptabla svarstider i 99:e percentilen, vilket bekräftades av både HPA och hybridmetoden. Det är dock viktigt att notera att dessa resultat är specifika för den autoskalningskonfiguration, mikrotjänst och arbetsbelastningsmodell som användes i studien och kanske inte är universellt tillämpliga.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-332142 |
Date | January 2023 |
Creators | Nilsen, Johanna |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS), Stockholm : KTH Royal Institute of Technology |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2023:510 |
Page generated in 0.0018 seconds