Return to search

A constraint-based hypergraph partitioning approach to coreference resolution

The objectives of this thesis are focused on research in machine learning for
coreference resolution. Coreference resolution is a natural language processing
task that consists of determining the expressions in a discourse that mention or
refer to the same entity.
The main contributions of this thesis are (i) a new approach to coreference
resolution based on constraint satisfaction, using a hypergraph to represent
the problem and solving it by relaxation labeling; and (ii) research towards
improving coreference resolution performance using world knowledge extracted
from Wikipedia.
The developed approach is able to use entity-mention classi cation model
with more expressiveness than the pair-based ones, and overcome the weaknesses
of previous approaches in the state of the art such as linking contradictions,
classi cations without context and lack of information evaluating pairs. Furthermore,
the approach allows the incorporation of new information by adding
constraints, and a research has been done in order to use world knowledge to
improve performances.
RelaxCor, the implementation of the approach, achieved results in the
state of the art, and participated in international competitions: SemEval-2010
and CoNLL-2011. RelaxCor achieved second position in CoNLL-2011. / La resolució de correferències és una tasca de processament del llenguatge natural que consisteix en determinar les expressions
d'un discurs que es refereixen a la mateixa entitat del mon real. La tasca té un efecte directe en la minería de textos així com en
moltes tasques de llenguatge natural que requereixin interpretació del discurs com resumidors, responedors de preguntes o
traducció automàtica. Resoldre les correferències és essencial si es vol poder “entendre” un text o un discurs.
Els objectius d'aquesta tesi es centren en la recerca en resolució de correferències amb aprenentatge automàtic. Concretament,
els objectius de la recerca es centren en els següents camps:
+ Models de classificació: Els models de classificació més comuns a l'estat de l'art estan basats en la classificació independent de
parelles de mencions. Més recentment han aparegut models que classifiquen grups de mencions. Un dels objectius de la tesi és
incorporar el model entity-mention a l'aproximació desenvolupada.
+ Representació del problema: Encara no hi ha una representació definitiva del problema. En aquesta tesi es presenta una
representació en hypergraf.
+ Algorismes de resolució. Depenent de la representació del problema i del model de classificació, els algorismes de ressolució
poden ser molt diversos. Un dels objectius d'aquesta tesi és trobar un algorisme de resolució capaç d'utilitzar els models de
classificació en la representació d'hypergraf.
+ Representació del coneixement: Per poder administrar coneixement de diverses fonts, cal una representació simbòlica i
expressiva d'aquest coneixement. En aquesta tesi es proposa l'ús de restriccions.
+ Incorporació de coneixement del mon: Algunes correferències no es poden resoldre només amb informació lingüística. Sovint
cal sentit comú i coneixement del mon per poder resoldre coreferències. En aquesta tesi es proposa un mètode per extreure
coneixement del mon de Wikipedia i incorporar-lo al sistem de resolució.
Les contribucions principals d'aquesta tesi son (i) una nova aproximació al problema de resolució de correferències basada en
satisfacció de restriccions, fent servir un hypergraf per representar el problema, i resolent-ho amb l'algorisme relaxation labeling; i
(ii) una recerca per millorar els resultats afegint informació del mon extreta de la Wikipedia.
L'aproximació presentada pot fer servir els models mention-pair i entity-mention de forma combinada evitant així els problemes
que es troben moltes altres aproximacions de l'estat de l'art com per exemple: contradiccions de classificacions independents,
falta de context i falta d'informació. A més a més, l'aproximació presentada permet incorporar informació afegint restriccions i s'ha
fet recerca per aconseguir afegir informació del mon que millori els resultats.
RelaxCor, el sistema que ha estat implementat durant la tesi per experimentar amb l'aproximació proposada, ha aconseguit uns
resultats comparables als millors que hi ha a l'estat de l'art. S'ha participat a les competicions internacionals SemEval-2010 i
CoNLL-2011. RelaxCor va obtenir la segona posició al CoNLL-2010.

Identiferoai:union.ndltd.org:TDX_UPC/oai:www.tdx.cat:10803/83904
Date16 May 2012
CreatorsSapena Masip, Emili
ContributorsTurmo Borras, Jorge, Padró, Lluís, Universitat Politècnica de Catalunya. Departament de Llenguatges i Sistemes Informàtics
PublisherUniversitat Politècnica de Catalunya
Source SetsUniversitat Politècnica de Catalunya
LanguageSpanish
Detected LanguageSpanish
Typeinfo:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion
Format122 p., application/pdf
SourceTDX (Tesis Doctorals en Xarxa)
Rightsinfo:eu-repo/semantics/openAccess, ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

Page generated in 0.0029 seconds