L’architecture polarisée des neurones est mise en place est maintenue grâce à un adressage hautement contrôlé de protéines vers l’axone ou vers le compartiment somatodendritique. Parmi ces protéines, les récepteurs aux protéines G (RCPG) neuronaux sont des cibles pharmacologiques clés. Cependant, leur pharmacologie est généralement étudiée dans des lignées cellulaires non polarisées et les résultats obtenus dans ces systèmes ne caractérisent pas correctement les effets physiologiques de l’activation des RCPG présents dans le cerveau. Par conséquent, un des principaux sujets de recherche de notre équipe est de comprendre comment la polarité neuronale influe sur la pharmacologie des RCPG, en étudiant l’un des RCPG les plus abondants dans le cerveau : le récepteur cannabinoïque de type-1 (CB1R). Les études précédentes de notre groupe ont suggéré que CB1R acquiert une polarisation axonale grâce à un adressage transcytotique : après leur synthèse, ces récepteurs apparaissent sur la membrane plasmique somatodendritique d’où ils sont rapidement enlevés par endocytose constitutive puis adressés à la membrane plasmique axonale où ils s’accumulent du fait d’une endocytose réduite. Au début de ma thèse, nous avons directement mesuré cette endocytose différentielle et le transport transcytotique de CB1R en utilisant des neurones de rats mis en culture dans des dispositifs microfluidiques. De plus, nous avons montré que des traitements pharmacologiques prolongés peuvent fortement changer la distribution de RCPG à la surface neuronale. Ces résultats démontrent que l’équilibre endocytotique dépendant du compartiment neuronal, qui est contrôlable pharmacologiquement, est important pour la distribution des RCPG neuronaux. Dans une seconde partie, nous avons étudié si le trafic différentiel de CB1R entre axones et dendrites est corrélé avec une pharmacologie différentielle. CB1R est majoritairement couplé à des protéines de type Gi/o et est connu pour inhiber la production d’AMPc. Nous avons donc développé l’imagerie par Föster Resonance Energy Transfer (FRET) appliqué aux cultures de neurones d’hippocampe de rats afin de mesurer la modulation de la voie de signalisation AMPc/PKA en aval de CB1R endogènes dans l’ensemble des compartiments neuronaux : somata, dendrites, mais aussi dans les axones matures très fins. Nos résultats montrent que CB1R possède une pharmacologie différente entre les dendrites et les axones. Notamment, son activation conduit à une diminution plus forte de l’activité basale de la PKA dans les axones comparé aux dendrites, lié au plus grand nombre de récepteurs présents sur la membrane de ce compartiment. De plus, nous démontrons que, contrairement aux récepteurs axonaux, les CB1R somatodendritiques inhibent constitutivement la voie AMPc/PKA. Cette différence est due à la distribution polarisée de la DAGLipase, l’enzyme synthétisant l’endocannabinoïde principal, le 2-arachidonoyglycerol (2-AG). De plus, l’inhibition pharmacologique de la DAGL modifie l’efficacité de plusieurs agonistes de CB1R dans le compartiment somatodendritique mais pas dans l’axone. Cet effet pourrait être dû à une modulation allostérique. Dans une troisième partie, nous avons étudié si les résultats ci-dessus peuvent être généralisés à d’autres RCPG. Etant donné que l’adressage axonal et la pharmacologie in vitro des récepteurs sérotoninergiques 5-HT1B montrent de fortes similitudes avec ceux de CB1R, nous avons étudié la pharmacologie de ces récepteurs en utilisant la technique de FRET développée précédemment. De façon similaire, nous avons trouvé une pharmacologie différentielle entre l’axone et les dendrites. / Polarized neuronal architecture is achieved and maintained mainly through highly controlled targeting of proteins to axons versus to the somatodendritic compartment. Among these proteins, neuronal G protein coupled receptors (GPCRs) are key therapeutic targets. However, their pharmacology is generally studied in non-polarized cell lines, and results obtained in such systems likely do not fully characterize the physiological effects of brain GPCR activation. Therefore, a main research subject of our group is to understand how neuronal polarity influences GPCR pharmacology, by studying one of the most abundant GPCR in the brain: the type-1 cannabinoid receptor (CB1R). Previous studies of the group suggested that CB1Rs achieve axonal polarization through transcytotic targeting: after their synthesis, these receptors appear on the somatodendritic plasma membrane from where they are removed rapidly by constitutive endocytosis and then targeted to the axonal plasma membrane where they accumulate due to relatively reduced endocytosis rate. At the beginning of my PhD project we directly demonstrated this differential endocytosis and transcytotic transport of CB1Rs by using cultured neurons in microfluidic devices. Moreover, we showed that chronic pharmacological treatments may strongly change neuronal GPCR distribution on the neuronal surface. These results demonstrate that subdomain-dependent steady-state endocytosis, which is pharmacologically controllable, is important for GPCR distribution in neurons. In a second part, we asked if differential traffic of CB1Rs between axons and dendrites is correlated with differential pharmacology. CB1R is predominantly coupled to Gi/o proteins and is known to inhibit cAMP production. Thus, we developed live Föster Resonance Energy Transfer (FRET) imaging in cultured hippocampal neurons in order to measure basal cAMP/PKA pathway modulation downstream of endogenous CB1Rs in all neuronal compartments: in somata, in dendrites but also in the very thin mature axons. Our results show that CB1R displays differential pharmacology between axon and dendrites. Notably, its activation leads to a stronger decrease of PKA activity in axons compared to dendrites, due to increased number of membrane receptors in this compartment. Moreover, we demonstrate that somatodendritic CB1Rs constitutively inhibit cAMP/PKA pathway, while axonal receptors do not. This difference is due to polarized distribution of DAGLipase, the enzyme that synthesizes the major endocannabinoid 2-arachidonoylglycerol (2-AG). Moreover, blocking DAGL by pharmacological treatment modifies somatodendritic, but not axonal effects of several CB1R agonists, possibly through allosteric action. In a third part, we asked if the above results may be generalized to other GPCRs. Because the axonal targeting and in vitro pharmacology of 5-HT1B serotonin receptors demonstrate strong similarities with CB1Rs, we studied their neuronal pharmacology by using the previously developed FRET technique. We found similar differential responses to pharmacological treatments between axon and dendrites. In a fourth part, we investigated the role of the threonine 210 (T210) residue in the constitutive activity of neuronal CB1R. We showed that the hypoactive mutant T210A-CB1R do not constitutively recruit signaling pathways even in somatodendritic compartment, where 2-AG is present. This result demonstrates that T210 is necessary for constitutive CB1R activation by 2-AG.Finally, previous results of our group demonstrated the involvement of CB1R in neuronal development. Notably, CB1R activation was shown to have an overall inhibitory effect on the development of polarized neuronal morphology. We established a bibliographic review on this subject. The published literature data suggest that not only neuronal polarization influences both CB1R traffic and pharmacology but CB1Rs also contribute to the achievement of neuronal polarization. (...)
Identifer | oai:union.ndltd.org:theses.fr/2014PA05T070 |
Date | 03 October 2014 |
Creators | Ladarré, Delphine |
Contributors | Paris 5, Lenkei, Zsolt |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0032 seconds