Cette thèse aborde deux sujets peu traités dans la littérature concernant le théorie des valeurs extrêmes : celui des observations en présence de covariables et celui des mesures de dépendance pour des paires d'observations. Dans la première partie de cette thèse, nous avons considéré le cas où la variable d'intérêt est observée simultanément avec une covariable, pouvant être fixe ou aléatoire. Dans ce contexte, l'indice de queue dépend de la covariable et nous avons proposé des estimateurs de ce paramètre dont nous avons étudié les propriétés asymptotiques. Leurs comportements à distance finie ont été validés par simulations. Puis, dans la deuxième partie, nous nous sommes intéressés aux extrêmes multivariés et plus particulièrement à mesurer la dépendance entre les extrêmes. Dans une situation proche de l'indépendance asymptotique, il est très difficile de mesurer cette dépendance et de nouveaux modèles doivent être introduits. Dans ce contexte, nous avons adapté un outil de géostatistique, le madogramme, et nous avons étudié ses propriétés asymptotiques. Ses performances sur simulations et données réelles ont également été exhibées. Cette thèse offre de nombreuses perspectives, tant sur le plan pratique que théorique dont une liste non exhaustive est présentée en conclusion de la thèse. / This thesis presents a study of the extreme value theory and is focused on two subjects rarely analyzed: observations associated with covariates and dependence measures for pairs of observations.In the first part, we considered the case where the variable of interest is simultaneously recorded with a covariate which can be either fixed or random. The conditional tail index then depends on the covariate and we proposed several estimators with their asymptotic properties. Their behavior have been approved by simulations.In the second part, we were interested in multivariate extremes and more particularly in measuring the dependence between them. In a case of near asymptotic independence, we have to introduce new models in order to measure the dependence properly. In this context, we adapted a geostatistical tool, the madogram, and studied its asymptotic properties. We completed the study with simulations and real data of precipitations.
Identifer | oai:union.ndltd.org:theses.fr/2012STRAD041 |
Date | 21 September 2012 |
Creators | Schorgen, Antoine |
Contributors | Strasbourg, Guillou, Armelle |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French, English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0027 seconds