The rapid development and disitribution of COVID-19 vaccines have sparked diverse public reactions globally, often reflected through social media platförms like Twitter. This study aims to analyze the sentiment andd public discourse surrounding COVID-19 vaccines on Twitter, utilizing advanced text classification techniques to navigare the vast, unstructured nature of sicial media dfata. By implementing sentiment analysis, the research categoizes tweets into positive, negative, and neutral sentiments to gauge public opinion more effectively. In-depth analysis thorugh topic modelingtecniques helped identify seven key topicvs influencing public sentiment including aspects related to efficiacy, logisticl challenges, safety concens, and personal experiences, each varying in prominence depending on the country, as well as the specific timeline of vaccine deployment. Additionally, this study explorers geographical variations in sentiment, notig significant differences in public opinion across different countries. These variations could be tied to local cultural, social, and political contexts. Reults from this study show a polarized response towards vaccination, with significant discourse clusers showing either strong supprt for or resistance against the COVID-19 vaccination efforts. This polarization is further pronounced by the logistical challenges and trust issues related to vaccine science, particularly emphasized in tweets from couintries with lower vaccine acceptance rates. This sentiment analysis on Twitter offers valuable insights into the public's perception and acceptancce of COVID-19 vaccines, providing a useful tool for policymakers and public health officials to understand and address publiv concerns effectively. By identifying and understanding the key factors influencing vaccine sentiment, tageted communication strategies can be developed to enhance publiv engagement and vaccine uptake.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-107435 |
Date | January 2024 |
Creators | Andersson, Patrik |
Publisher | Luleå tekniska universitet, Institutionen för system- och rymdteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.003 seconds