Spelling suggestions: "subject:"cocial media 2analysis"" "subject:"cocial media 3analysis""
1 |
Mining, Modeling, and Analyzing Real-Time Social TrailsKamath, Krishna Y 16 December 2013 (has links)
Real-time social systems are the fastest growing phenomena on the web, enabling millions of users to generate, share, and consume content on a massive scale. These systems are manifestations of a larger trend toward the global sharing of the real-time interests, affiliations, and activities of everyday users and demand new computational approaches for monitoring, analyzing, and distilling information from the prospective web of real-time content.
In this dissertation research, we focus on the real-time social trails that reflect the digital footprints of crowds of real-time web users in response to real-world events or online phenomena. These digital footprints correspond to the artifacts strewn across the real-time web like posting of messages to Twitter or Facebook; the creation, sharing, and viewing of videos on websites like YouTube; and so on. While access to social trails could benefit many domains there is a significant research gap toward discovering, modeling, and leveraging these social trails. Hence, this dissertation research makes three contributions:
• The first contribution of this dissertation research is a suite of efficient techniques for discovering non-trivial social trails from large-scale real-time social systems. We first develop a communication-based method using temporal graphs for discovering social trails on a stream of conversations from social messaging systems like instant messages, emails, Twitter directed or @ messages, SMS, etc. and then develop a content-based method using locality sensitive hashing for discovering content based social trails on a stream of text messages like Tweet stream, stream of Facebook messages, YouTube comments, etc.
• The second contribution of this dissertation research is a framework for modeling and predicting the spatio-temporal dynamics of social trails. In particular, we develop a probabilistic model that synthesizes two conflicting hypotheses about the nature of online information spread: (i) the spatial influence model, which asserts that social trails propagates to locations that are close by; and (ii) the community affinity influence model, which asserts that social trail prop- agates between locations that are culturally connected, even if they are distant.
• The third contribution of this dissertation research is a set of methods for social trail analytics and leveraging social trails for prognostic applications like real-time content recommendation, personalized advertising, and so on. We first analyze geo-spatial social trails of hashtags from Twitter, investigate their spatio-temporal dynamics and then use this analysis to develop a framework for recommending hashtags. Finally, we address the challenge of classifying social trails efficiently on real-time social systems.
|
2 |
Investigating Tweet Propagation via Dynamical Models and Influencer AnalysisNilsson, Joel January 2022 (has links)
Social media consume an increasing portion of people’s daily lives and are important platforms in the realms of politics and marketing for reaching out to voters and consumers. Describing and predicting the behaviour of users on social media is thus of interest for companies and politicians, as well as researchers studying information diffusion and human behaviour. Twitter is a fast-paced microblog that is host to debates, conversations, and campaigns between users as well as organisations all over the world. As all interactions on Twitter are publicly available, the platform has been used as a data source for many studies. While previous works have mainly focused on interaction dynamics for specific user groups or topics, or on predicting virality, the perspective we take in this thesis is to focus on the level of the individual conversation and to use dynamical models to characterise user interactions. The most prominent characteristic of Twitter conversations is the clear presence of peaks in engagement. We introduce a classification scheme based on peak configurations to quantify the interaction patterns present on Twitter and find that around 70% of conversations exhibit a single peak in user engagement, usually followed by a slower decay. A second order linear model describes the dynamics of the single peak scenario well, indicating that most conversations have two phases - an initial phase of rapid rise and decline in interaction rate, followed by a phase of slowly decreasing interaction rate. We quantify the characteristic life span of Twitter conversations in terms of the second order system time constants. Furthermore, we investigate the impact that users with many followers, so called influencers, have on conversation dynamics, and in particular on the emergence of interaction peaks. The data suggests that influencers do have a noticeable, albeit limited effect on the spreading of conversations to other users.
|
3 |
Computational Models of Nuclear ProliferationFrankenstein, William 01 May 2016 (has links)
This thesis utilizes social influence theory and computational tools to examine the disparate impact of positive and negative ties in nuclear weapons proliferation. The thesis is broadly in two sections: a simulation section, which focuses on government stakeholders, and a large-scale data analysis section, which focuses on the public and domestic actor stakeholders. In the simulation section, it demonstrates that the nonproliferation norm is an emergent behavior from political alliance and hostility networks, and that alliances play a role in current day nuclear proliferation. This model is robust and contains second-order effects of extended hostility and alliance relations. In the large-scale data analysis section, the thesis demonstrates the role that context plays in sentiment evaluation and highlights how Twitter collection can provide useful input to policy processes. It first highlights the results of an on-campus study where users demonstrated that context plays a role in sentiment assessment. Then, in an analysis of a Twitter dataset of over 7.5 million messages, it assesses the role of ‘noise’ and biases in online data collection. In a deep dive analyzing the Iranian nuclear agreement, we demonstrate that the middle east is not facing a nuclear arms race, and show that there is a structural hole in online discussion surrounding nuclear proliferation. By combining both approaches, policy analysts have a complete and generalizable set of computational tools to assess and analyze disparate stakeholder roles in nuclear proliferation.
|
4 |
Stance Detection and Analysis in Social MediaSobhani, Parinaz January 2017 (has links)
Computational approaches to opinion mining have mostly focused on polarity detection of product reviews by classifying the given text as positive, negative or neutral. While, there is less effort in the direction of socio-political opinion mining to determine favorability towards given targets of interest, particularly for social media data like news comments and tweets. In this research, we explore the task of automatically determining from the text whether the author of the text is in favor of, against, or neutral towards a proposition or target. The target may be a person, an organization, a government policy, a movement, a product, etc. Moreover, we are interested in detecting the reasons behind authors’ positions.
This thesis is organized into three main parts: the first part on Twitter stance detection and interaction of stance and sentiment labels, the second part on detecting stance and the reasons behind it in online news comments, and the third part on multi-target stance classification.
One may express favor (or disfavor) towards a target by using positive or negative language. Here, for the first time, we present a dataset of tweets annotated for whether the tweeter is in favor of or against pre-chosen targets, as well as for sentiment. These targets may or may not be referred to in the tweets, and they may or may not be the target of opinion in the tweets. We develop a simple stance detection system that outperforms all 19 teams that participated in
a recent shared task competition on the same dataset (SemEval-2016 Task #6). Additionally, access to both stance and sentiment annotations allows us to conduct several experiments to tease out their interactions.
Next, we proposed a novel framework for joint learning of stance and reasons behind it.
This framework relies on topic modeling. Unlike other machine learning approaches for argument tagging which often require a large set of labeled data, our approach is minimally supervised. The extracted arguments are subsequently employed for stance classification. Furthermore, we create and make available the first dataset of online news comments manually annotated for stance and arguments. Experiments on this dataset demonstrate the benefits of using topic modeling, particularly Non-Negative Matrix Factorization, for argument detection. Previous models for stance classification often treat each target independently, ignoring the potential (sometimes very strong) dependency that could exist among targets. However,
in many applications, there exist natural dependencies among targets. In this research, we relieve such independence assumptions in order to jointly model the stance expressed towards multiple targets. We present a new dataset that we built for this task and make it publicly available. Next, we show that an attention-based encoder-decoder framework is very effective for this problem, outperforming several alternatives that jointly learn dependent subjectivity through cascading classification or multi-task learning.
|
5 |
User Testing/Co-Design of Current PIVOT FeaturesKatragadda, Monica 04 October 2021 (has links)
No description available.
|
6 |
Location Knowledge Discovery from User Activities / ユーザアクティビティからの場所に関する知識発見Zhuang, Chenyi 25 September 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第20737号 / 情博第651号 / 新制||情||112(附属図書館) / 京都大学大学院情報学研究科社会情報学専攻 / (主査)教授 吉川 正俊, 教授 石田 亨, 教授 美濃 導彦, 准教授 馬 強 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
|
7 |
A Framework to Identify Online Communities for Social Media AnalysisNikhil Mehta (9750842) 16 October 2024 (has links)
<p dir="ltr">Easy access, variety of content, and fast widespread interactions are some of the reasons that have made social media increasingly popular in our society. This has lead to many people use social media everyday for a variety of reasons, such as interacting with friends or consuming news content. Thus, understanding content on social media is more important than ever.</p><p dir="ltr">An increased understanding on social media can lead to improvements on a large number of important tasks. In this work, we particularly focus on fake news detection and political bias detection. Fake news, text published by news sources with an intent to spread misinformation and sway beliefs, is ever prevalent in today's society. Detecting it is an important and challenging problem to prevent large scale misinformation and maintain a healthy society. In a similar way, detecting the political bias of news content can provide insights about the different perspectives on social media.</p><p dir="ltr">In this work, we view the problem of understanding social media as reasoning over the relationships between sources, the articles they publish, and the engaging users. We start by analyzing these relationships in a graph-based framework, and then use Large Language Models to do the same. We hypothesize that the key to understanding social media is understanding these relationships, such as identifying which users have similar perspectives, or which articles are likely to be shared by similar users.</p><p dir="ltr">Throughout this thesis, we propose several frameworks to capture the relationships on social media better. We initially tackle this problem using supervised learning systems, improving them to achieve strong performance. However, we find that automatedly modeling the complexities of the social media landscape is challenging. On the contrary, having humans analyze and interact with all news content to find relationships, is not scalable. Thus, we then propose to approach enhance our supervised approaches by approaching the social media understanding problem \textit{interactively}, where humans can interact to help an automated system learn a better social media representation quality.</p><p dir="ltr">On real world events, our experiments show performance improvements in detecting the factuality and political bias of news sources, both when trained with and without minimal human interactions. We particularly focus on one of the most challenging setups of this task, where test data is unseen and focuses on new topics when compared with the training data. This realistic setting shows the real world impact of our work in improving social media understanding.</p>
|
8 |
Information Extraction From User Generated Noisy TextsTabassum Binte Jafar, Jeniya January 2020 (has links)
No description available.
|
9 |
Finding Street Gang Member Profiles on TwitterBalasuriya, Lakshika January 2017 (has links)
No description available.
|
10 |
Domain-Specific Document Retrieval Framework for Near Real-time Social Health DataSoni, Swapnil 01 September 2015 (has links)
No description available.
|
Page generated in 0.0497 seconds