Dans cette thèse, nous développons des méthodes analytiques et numériques pour capturer les dynamiques asymptotiques de problèmes issus de la physique des plasmas et de la modélisation des mouvements collectifs dans les populations animales. Dans une première partie, nous présentons une méthode numérique Particle-In-Cell (PIC) pour le système Vlasov-Poisson préservant l'asymptotique quasi-neutre. Dans une seconde partie, nous étudions la limite macroscopique d'un modèle de Vicsek décrivant des interactions d'alignement entre deux populations, une population à l'arrêt et une population en mouvement. Nous sélectionnons ensuite un schéma numérique pour capturer les solutions du modèle macroscopique de Vicsek correspondant à la dynamique particulaire sous-jacente. La troisième partie est dédiée à l'étude des transitions compressible-incompressible apparaissant sous l'effet d'une contrainte de congestion dans un modèle macroscopique de déplacement collectif. Des schémas numériques préservant l'asymptotique de congestion sont ensuite mis au point pour le système d'Euler avec une contrainte de densité maximale.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00568232 |
Date | 30 June 2010 |
Creators | Navoret, Laurent |
Publisher | Université Paul Sabatier - Toulouse III |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0022 seconds