Return to search

Algorithms for Molecular Dynamics Simulations

Methods for performing large-scale parallel Molecular Dynamics(MD) simulations are investigated. A perspective on the field of parallel MD simulations is given. Hardware and software aspects are characterized and the interplay between the two is briefly discussed. A method for performing ab initio MD is described; the method essentially recomputes the interaction potential at each time-step. It has been tested on a system of liquid water by comparing results with other simulation methods and experimental results. Different strategies for parallelization are explored. Furthermore, data-parallel methods for short-range and long-range interactions on massively parallel platforms are described and compared. Next, a method for treating electrostatic interactions in MD simulations is developed. It combines the traditional Ewald summation technique with the nonuniform Fast Fourier transform---ENUF for short. The method scales as N log N, where N is the number of charges in the system. ENUF has a behavior very similar to Ewald summation and can be easily and efficiently implemented in existing simulation programs. Finally, an outlook is given and some directions for further developments are suggested.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:su-1008
Date January 2006
CreatorsHedman, Fredrik
PublisherStockholms universitet, Institutionen för fysikalisk kemi, oorganisk kemi och strukturkemi, Stockholm : Institutionen för fysikalisk kemi, oorganisk kemi och strukturkemi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0026 seconds