Return to search

Espaces de timbre générés par des réseaux profonds convolutionnels

Il est avant-tout question, dans ce mémoire, de la modélisation du timbre grâce à des algorithmes d'apprentissage machine. Plus précisément, nous avons essayé de construire un espace de timbre en extrayant des caractéristiques du son à l'aide de machines de Boltzmann convolutionnelles profondes.

Nous présentons d'abord un survol de l'apprentissage machine, avec emphase sur les machines de Boltzmann convolutionelles ainsi que les modèles dont elles sont dérivées. Nous présentons aussi un aperçu de la littérature concernant les espaces de timbre, et mettons en évidence quelque-unes de leurs limitations, dont le nombre limité de sons utilisés pour les construire. Pour pallier à ce problème, nous avons mis en place un outil nous permettant de générer des sons à volonté. Le système utilise à sa base des plug-ins qu'on peut combiner et dont on peut changer les paramètres pour créer une gamme virtuellement infinie de sons. Nous l'utilisons pour créer une gigantesque base de donnée de timbres générés aléatoirement constituée de vrais instruments et d'instruments synthétiques. Nous entrainons ensuite les machines de Boltzmann convolutionnelles profondes de façon non-supervisée sur ces timbres, et utilisons l'espace des caractéristiques produites comme espace de timbre.

L'espace de timbre ainsi obtenu est meilleur qu'un espace semblable construit à l'aide de MFCC. Il est meilleur dans le sens où la distance entre deux timbres dans cet espace est plus semblable à celle perçue par un humain. Cependant, nous sommes encore loin d'atteindre les mêmes capacités qu'un humain. Nous proposons d'ailleurs quelques pistes d'amélioration pour s'en approcher. / This thesis presents a novel way of modelling timbre using machine learning algorithms. More precisely, we have attempted to build a timbre space by extracting audio features using deep-convolutional Boltzmann machines.

We first present an overview of machine learning with an emphasis on convolutional Boltzmann machines as well as models from which they are derived. We also present a summary of the literature relevant to timbre spaces and highlight their limitations, such as the small number of timbres used to build them. To address this problem, we have developed a sound generation tool that can generate as many sounds as we wish. At the system's core are plug-ins that are parameterizable and that we can combine to create a virtually infinite range of sounds. We use it to build a massive randomly generated timbre dataset that is made up of real and synthesized instruments. We then train deep-convolutional Boltzmann machines on those timbres in an unsupervised way and use the produced feature space as a timbre space.

The timbre space we obtain is a better space than a similar space built using MFCCs. We consider it as better in the sense that the distance between two timbres in that space is more similar to the one perceived by a human listener. However, we are far from reaching the performance of a human. We finish by proposing possible improvements that could be tried to close our performance gap.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMU.1866/6294
Date08 1900
CreatorsLemieux, Simon
ContributorsEck, Douglas
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageFrench
Detected LanguageFrench
TypeThèse ou Mémoire numérique / Electronic Thesis or Dissertation

Page generated in 0.0025 seconds