Current research concentrates on ways to investigate and improve water productivity (WP), as agriculture is today’s predominant freshwater consumer, averaging at 70% and reaching up to 93% in some regions. A growing world population will require more food and thus more water for cultivation. Regions that are already affected by physical water scarcity and which depend on irrigation for growing crops will face even greater challenges regarding their water supply. Other problems in such regions are a variable water supply, inefficient irrigation practices, and over-pumping of available groundwater resources with other adverse effects on the ecosystem. To face those challenges, strategies are needed that use the available water resources more efficiently and allow farming in a more sustainable way.
This work focused on the management of sensor-based deficit irrigation (DI) systems and improvements of WP through a combined approach of simulation-optimization and irrigation experiments. In order to improve irrigation control, a new sensor called pF-meter was employed, which extended the measurement range of the commonly used tensiometers from pF 2.9 to pF 7.
The following research questions were raised: (i) Is this approach a suitable strategy to improve WP; (ii) Is the sensor for irrigation control suitable; (iii) Which crop growth models are suitable to be part of that approach; and (iv) Can the combined application with experiments prove an increase of WP?
The stochastic simulation-optimization approach allowed deriving parameter values for an optimal irrigation control for sensor-based full and deficit irrigation strategies. Objective was to achieve high WP with high reliability. Parameters for irrigation control included irrigation thresholds of soil-water potentials because of the working principle behind plant transpiration where pressure gradients are transmitted from the air through the plant and into the root zone.
Optimal parameter values for full and deficit irrigation strategies were tested in irrigation experiments in containers in a vegetation hall with drip irrigated maize and compared to schedule-based irrigation strategies with regard to WP and water consumption. Observation data from one of the treatments was used afterwards in a simulation study to systematically investigate the parameters for implementing effective setups of DI systems.
The combination of simulation-optimization and irrigation experiments proved to be a suitable approach for investigating and improving WP, as well as for deriving optimal parameter values of different irrigation strategies. This was verified in the irrigation experiment and shown through overall high WP, equally high WP between deficit and full irrigation strategies, and achieved water savings. Irrigation thresholds beyond the measurement range of tensiometers are feasible and applicable. The pF-meter performed satisfactorily and is a promising candidate for irrigation control. Suitable crop models for being part of this approach were found and their properties formulated. Factors that define the behavior of DI systems regarding WP and water consumption were investigated and assessed.
This research allowed for drawing the first conclusions about the potential range of operations of sensor-based DI systems for achieving high WP with high reliability through its systematical investigation of such systems. However, this study needs validation and is therefore limited with regard to exact values of derived thresholds.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:29047 |
Date | 11 January 2016 |
Creators | Kloß, Sebastian |
Contributors | Schütze, Niels, Lennartz, Franz, Rodríguez Sinobas, Leonor, Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds