Return to search

Superdifusão em espaços finitos e derivadas fracionárias

Submitted by Rafael Santana (rafael.silvasantana@ufpe.br) on 2018-02-20T17:37:13Z
No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
Dissertacao TIAGO FRANCA BARRETO versao final revisada com ficha.pdf: 1881406 bytes, checksum: 12e01eebda9019e211cef41ad935a421 (MD5) / Made available in DSpace on 2018-02-20T17:37:13Z (GMT). No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
Dissertacao TIAGO FRANCA BARRETO versao final revisada com ficha.pdf: 1881406 bytes, checksum: 12e01eebda9019e211cef41ad935a421 (MD5)
Previous issue date: 2017-01-31 / Esta tese tem como objetivo a investigação teórica das propriedades estatísticas de um caminhante aleatório cuja distribuição de passos é dada pela distribuição a-estável de Lévy. Este tipo de distribuição possui um comportamento assintótico do tipo lei de potência, P(i) ~ í~v', £^$> 1, que gera uma divergência de momentos, a depender do expoente p = oc + 1 da distribuição, e introduz superdifusão no sistema. Inicialmente, revisitamos a solução da equação de difusão escrita em termos de derivadas fracionárias, visto que a equação de difusão convencional não consegue modelar sistemas subdifusivos ou superdifusivos. Obtemos a probabilidade P(x,t) de encontrar o caminhante em uma posição x no tempo t em termos das funções de Fox. Em seguida, mostramos como a solução para o espaço finito, com barreiras absorventes, muitas vezes obtida pelo Método das Imagens, viola o teorema de Sparre-Andersen. Abordamos então o problema de difusão anômala em espaços finitos via equações mestras, método anteriormente utilizado para o caso semi-infinito. Calculamos a taxa de sobrevivência do caminhante de Lévy e mostramos a mudança do comportamento da taxa de sobrevivência em seu limite de tempos longos. Finalmente, observamos que para duas barreiras ela apresenta um decaimento exponencial, enquanto que no limite de uma barreira obtemos a dependência do tipo lei de potência, como estabelecido pelo teorema de Sparre-Andersen. / This thesis has as objective the theoretical investigation of the statistical properties of a random walker whose step distribution is given by the Lévy a-stable distribution. This type of distribution has an asymptotic power law behavior, P(£) ~ í~v', £^$> 1, which generates a divergence of moments depending on the exponent p = oc + 1 of the distribution, and introduces superdiffusion into the system. Initially, we revisit the solu-tion of the diffusion equation in terms of fractional derivatives, since the conventional diffusion equation cannot model subdiffusive or superdiffusive systems. We obtain the probability P(x,t) of finding the walker in a position x in time t in terms of Fox’s functions. We also show how the solution in finite space with absorbent barriers, often obtained by Image’s Method, violates Sparre-Andersen’s theorem. We then address the problem of anomalous diffusion in a finite space via the master equation, a method previously used for the semi-infinite case. We calculate the survival rate of the Lévy walker and show the change in the behavior of the survival rate in the long time limit. Finally we observe that for two barriers it presents an exponential decay, whereas in the limit case of a single barrier we obtain the power-law dependence, as established by Sparre-Andersen’s theorem.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufpe.br:123456789/23754
Date31 January 2017
CreatorsARAÚJO, Hugo de Andrade
Contributorshttp://lattes.cnpq.br/4321118621178584, RAPOSO, Ernesto Carneiro Pessoa
PublisherUniversidade Federal de Pernambuco, Programa de Pos Graduacao em Fisica, UFPE, Brasil
Source SetsIBICT Brazilian ETDs
LanguageBreton
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Repositório Institucional da UFPE, instname:Universidade Federal de Pernambuco, instacron:UFPE
RightsAttribution-NonCommercial-NoDerivs 3.0 Brazil, http://creativecommons.org/licenses/by-nc-nd/3.0/br/, info:eu-repo/semantics/openAccess

Page generated in 0.002 seconds