Cette thèse est motivée par l'étude des courbes algébriques réelles dans le plan projectif réel et dans les surfaces rationnelles géométriquement réglées, munis de leur structure réelle standard. Deux problèmes ont particulièrement retenus notre attention. Les ovales d'une courbe non singulière dans dans le plan projectif réel de degré pair sont naturellement divisés en deux ensembles disjoints : les ovales pairs, contenus dans un nombre pair d'ovales, et les ovales impairs. La combinaison des inégalités de Harnack et de Petrovsky permet d'obtenir une borne supérieure pour le nombre d'ovales pairs et le nombre d'ovales impairs en fonction du degré de la courbe. Généralisant une construction antérieure d'I. Itenberg, nous montrons que cette borne est asymptotiquement optimale. La majorité des restrictions connues sur la topologie des courbes algébriques réelles sont aussi valables pour une classe plus vaste d'objets, les courbes pseudoholomorphes réelles. Un problème ouvert est celui de l'existence d'un schéma réel réalisable par une courbe pseudoholomorphe réelle non singulière, mais pas par une courbe algébrique réelle non singulière de même degré. Nous étudions dans cette thèse les courbes réelles non singulières symétriques de degré 7 dans le plan projectif réel, algébriques et pseudoholomorphes. Nous obtenons en particulier plusieurs classifications, et exhibons deux schémas réels réalisables par des courbes pseudoholomorphes réelles séparantes symétriques non singulières de degré 7 mais pas par de telles courbes algébriques. Certains des résultats de cette thèse sont basés sur l'utilisation des dessins d'enfants. En géométrie algébrique réelle, ces objets ont été utilisés la première fois par S. Yu. Orevkov. Ils permettent en particulier de répondre à la question suivante : Existe-t-il deux polynômes réels P et Q de degré n tels que les racines réelles de P, Q et P+Q réalisent un arrangement donné? Suivant Orevkov, nous donnons une condition nécessaire et suffisante à l'existence de deux tels polynômes, formulée en terme de dessins d'enfants. Nous donnons aussi un algorithme permettant d'établir si un L-schéma donné est réalisable par une courbe algébrique réelle trigonale.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00008652 |
Date | 10 December 2004 |
Creators | Brugallé, Erwan |
Publisher | Université Rennes 1 |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0022 seconds