Return to search

Rigid isotopy classification of real quintic rational plane curves / Classification des courbes planes réelles de degré 5 à isotopie rigide

Afin d’étudier les classes d'isotopie rigide des courbes rationnelles nodales de degré 5 dans RPP, nous associons à chaque quintique avec un point double réel marque une courbe trigonale dans la surface de Hirzebruch Sigma3 et le dessin reel nodal correspondant dans CP/(z mapsto bar{z}). Les dessins sont des versions réelles, proposées par S. Orevkov dans cite{Orevkov}, des dessins d'enfants de Grothendieck. Un dessin est un graphe contenu dans une surface topologique, muni d'une certaine structure supplémentaire. Dans cette thèse, nous étudions les propriétés combinatoires et les recompositions des dessins correspondants aux courbes trigonales nodales C subset Sigma dans les surfaces réglées réelles Sigma . Les dessins uninodaux sur une surface a bord quelconque et les dessins nodaux sur le disque peuvent être décomposés en blocs correspondant aux dessins cubiques sur le disque D2 , ce qui conduit a une classification des ces dessins. La classification des dessins considérés mène à une classification à isotopie rigide des courbes rationnelles nodales de degré 5 dans RPP. / In order to study the rigid isotopy classes of nodal rational curves of degree $5$ in $\RPP$, we associate to every real rational quintic curve with a marked real nodal point a trigonal curve in the Hirzebruch surface $\Sigma_3$ and the corresponding nodal real dessin on~$\CP/(z\mapsto\bar{z})$. The dessins are real versions, proposed by S. Orevkov~\cite{Orevkov}, of Grothendieck's {\it dessins d'enfants}. The {\it dessins} are graphs embedded in a topological surface and endowed with a certain additional structure. We study the combinatorial properties and decompositions of dessins corresponding to real nodal trigonal curves~$C\subset \Sigma$ in real ruled surfaces~$\Sigma$. Uninodal dessins in any surface with non-empty boundary and nodal dessins in the disk can be decomposed in blocks corresponding to cubic dessins in the disk~$\mathbf{D}^2$, which produces a classification of these dessins. The classification of dessins under consideration leads to a rigid isotopy classification of real rational quintics in~$\RPP$.

Identiferoai:union.ndltd.org:theses.fr/2017PA066116
Date28 September 2017
CreatorsJaramillo Puentes, Andrés
ContributorsParis 6, Itenberg, Ilia
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0018 seconds