<p>Glycosidases hydrolyse the glycosidic bond in carbohydrates. Structural studies of three glycosidases with different substrate specificities are presented in this work.</p><p>Dextranase catalyzes the hydrolysis of <i>α</i>-1,6-glycosidic linkage in dextran polymers. The structure of dextranase, Dex49A, from <i>Penicillium minioluteum</i> was solved in the apo-enzyme (1.8 Å resolution) and product-bound (1.65 Å resolution) forms. The main domain of the enzyme is a right-handed β-helix, which is connected to a β-sandwich domain at the N-terminus. Using NMR spectroscopy the reaction course was shown to occur with net inversion at the anomeric carbon. A new clan is suggested that links glycoside hydrolase (GH) families 28 and 49.</p><p>Endo-<i>β</i>-1,4-D-mannanase catalyzes the depolymerization of <i>β</i>-1,4-mannan polymers. The structure of endo-1,4-<i>β</i>-mannanase Man5A from blue mussel <i>Mytilus edulis</i> has been determined at 1.6 Å resolution. Kinetic analysis of Man5A revealed that the enzyme requires at least 6 subsites for efficient hydrolysis. The architecture of the catalytic cleft differs significantly from other GH 5 enzyme structures. We therefore suggest that Man5A represents a new subfamily in GH 5. </p><p>Both the Dex49A and the Man5A structures were determined by multiple-wavelength anomalous diffraction using the selenium <i>K</i>-edge with selenomethionyl enzymes expressed in the yeast <i>Pichia pastoris</i>.</p><p>Endoglucanase Cel6A from <i>Thermobifida fusca</i> hydrolyzes the <i>β</i>-1,4 linkages in cellulose. The structure of the catalytic domain of Cel6A from <i>T. fusca</i> in complex with a non-hydrolysable substrate analogue has been determined to 1.5 Å resolution. The glycosyl unit in subsite –1 was sterically hindered by Tyr73 and forced into a distorted <sup>2</sup>S<sub>O</sub> conformation. In the enzyme where Tyr73 was mutated to a serine residue the hindrance was removed and the glycosyl unit in subsite –1 had a relaxed <sup>4</sup>C<sub>1</sub> chair conformation.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:uu-6339 |
Date | January 2006 |
Creators | Larsson, Anna |
Publisher | Uppsala University, Department of Cell and Molecular Biology, Uppsala : Acta Universitatis Upsaliensis |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, text |
Relation | Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 145 |
Page generated in 0.0041 seconds