Mesmo com a evolução tecnológica em vários setores, a área de enfermagem tem tido investimentos escassos em pesquisa e desenvolvimento capazes de atender suas expectativas, principalmente no campo da inteligência artificial. As expectativas dos enfermeiros convergem à melhora de seus processos clínicos que resultará em uma maior aproximação de seus pacientes. Além disso, há dificuldade em reunir diagnósticos de enfermagem nos hospitais, onde diversos registros clínicos e procedimentos preenchidos manualmente e armazenados ainda em folhas de papel. Esta condição compromete a legibilidade dos documentos envolvidos nos processos hospitalares, e seu arquivamento torna o processo de levantamento de informações moroso, o que acaba por inviabilizar a pesquisa à qual poderia resultar em informações importantes para melhora do processo de tomada de decisões. O objetivo desta dissertação foi trazer o estado da arte em inteligência artificial focado em raciocínio baseado em casos e sua aplicação na sistematização da assistência de enfermagem. No sentido de validar o modelo levantado foi criado um protótipo para apresentar uma aplicação que pudesse auxiliar os enfermeiros em seus processos clínicos, armazenando suas experiências em uma base de casos para futuras pesquisas. O protótipo consistiu em digitalizar diagnósticos de enfermagem pediátrica, e inserção em uma base de casos, com o intuito de avaliar a eficácia do protótipo na manipulação destes casos, em uma estrutura propicia para recuperação, adaptação, indexação e comparação de casos. Esta dissertação apresenta como resultado uma ferramenta computacional para a área da saúde, empregando uma das técnicas de inteligência artificial, Raciocínio Baseados em Casos. Os resultados foram satisfatórios devido ao alto índice de aprovação nos quesitos confiabilidade, funcionalidade, usabilidade e eficiência conforme as normas ISO/ABNT de qualidade em software. / Even with the development of technology in many industries, the nursing sector has had low investment in research and development, mainly in the field of artificial intelligence. The expectations of nurses converge to improvement over his clinical procedures that will result in a closer relationship with their patients. Moreover, there is difficulty in finding nursing diagnoses in hospitals, while clinical records and procedures are completed manually and stored even on paper. This condition compromises the readability of documents involved in the admissions process, and archiving that also becomes time-consuming process of information gathering, which derail research that could result in important information for improved decision-making. The objective of this dissertation was to bring the state of the art regarding artificial intelligence focusing on Case-Based Reasoning and its application in the systematization of nursing care. In order to validate the model a prototype was set up to demonstrate an application that would assist nurses in their clinical files, storing their experiences in a case base for future research. The prototype was to scan diagnosis pediatric nursing, and insertion into a case base in order to evaluate the effectiveness of the prototype in handling those cases. It also provides a framework for recovery, adaptation, indexing, and comparison of cases. This dissertation presents results in a computational tool for health employing one of the techniques of artificial intelligence: Case-Based Reasoning. The results were satisfactory due to high rate in terms of structure reliability, functionality, usability and efficiency according to ISO / ABNT quality in software.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-02122011-130155 |
Date | 26 November 2009 |
Creators | Marcio Almeida Mendes |
Contributors | Pedro Luís Próspero Sanchez, Rafael do Espírito-Santo, Ana Lúcia da Silva |
Publisher | Universidade de São Paulo, Engenharia Elétrica, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0028 seconds