In dieser Arbeit beschreiben wir wie nicht-störungstheoretischer Wärmetransport im Rahmen von ab initio-Simulationen und linearer Antworttheorie formuliert werden kann. Die daraus resultierende ab initio-Green-Kubo-Methode ermöglicht die Simulation von Wärmetransport in Festkörpern beliebiger Anharmonizität und ist besonders geeignet um "stark anharmonische" Systeme zu beschreiben in denen störungstheoretische Ansätze unzuverlässig werden. Um die systematische Unterscheidung von harmonischen und anharmonischen Materialien zu ermöglichen führen wir ein "Anharmonizitätsmaß" ein, welches die anharmonischen Beiträge zu den interatomaren Kräften unter thermodynamischen Bedingungen quantifiziert. Mit diesem Anharmonizitätsmaß untersuchen wir typische dynamische Effekte die in stark anharmonischen Materialien auftreten, sowie die Grenzen störungstheoretischer Methoden zur Berechnung von Wärmetransporteigenschaften. Wir zeigen, dass eine negative Korrelation des Anharmonizitätsmaßes mit der Wärmeleitfähigkeit einfacher Kristalle besteht, was die intuitive Auffassung bestärkt, wonach harmonische Materialien bessere Wärmeleiter sind und umgekehrt. Auf diesen Erkenntnissen aufbauend identifizieren wird anharmonische Materialien als Kandidaten für Wärmetransport-Simulationen auf der Suche nach neuen thermischen Isolatoren. Auf diesem Wege identifizieren wir mehrere neue thermische Isolatoren welche potentielle technologische Relevanz als thermische Barrieren oder Thermoelektrika aufweisen könnten, und schlagen diese zur experimentellen Untersuchung vor. / In this work, we describe how a non-perturbative heat transport formalism for solids emerges in the framework of ab initio simulations coupled with linear response theory. The resulting ab initio Green Kubo method allows for studying heat transport in solids of arbitrary anharmonic strength, and is particularly suited to describe “strongly anharmonic” systems where per- turbative approaches become unreliable. In order to discern harmonic from anharmonic materials in a systematic way, we introduce an “anharmonicity measure” which quantifies the anharmonic contribution to the interatomic forces under thermodynamic conditions. Using this anharmonicity measure, we investigate typical dynamical effects occurring in strongly anharmonic compounds and investigate the limits of perturbative approaches for the study of thermal transport. We show that this measure negatively correlates with bulk thermal conductivities in simple solids, supporting the intuitive notion that more harmonic materials are better heat conductors and vice versa. Based on these findings, we identify anharmonic compounds as candidates for thermal transport simulations in the search for novel thermal insulators. In this way, we identify several new thermal insulators of potential technological relevance as thermal barriers or thermoelectric materials which we suggest for experimental study.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/25235 |
Date | 27 April 2022 |
Creators | Knoop, Florian |
Contributors | Draxl, Claudia, Scheffler, Matthias, Broido, David |
Publisher | Humboldt-Universität zu Berlin |
Source Sets | Humboldt University of Berlin |
Language | English |
Detected Language | English |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | (CC BY 4.0) Attribution 4.0 International, https://creativecommons.org/licenses/by/4.0/ |
Page generated in 0.0026 seconds