Return to search

Wireless optoelectronic interface enabling brain fiber photometry in live animal models

La biophotométrie sur fibre est une technique puissante utilisée en neuroscience pour surveiller les fluctuations dynamiques des niveaux de calcium en corrélation avec des événements neuronaux, tels que la génération de potentiel d’action, l’exocytose de neurotransmetteurs, des modifications de la plasticité synaptique et la transcription de gènes dans les structures cérébrales profondes d’animaux de laboratoire vivants. Cette approche permet également d’étudier la corrélation entre les processus neuronaux et le comportement de modèles animaux vivants afin de percer les mystéres du cerveaux et de nombreuses maladies comme la maladie d’Alzheimer. Les appareils de biophotométrie sur fibre de table classiques utilisent une fibre optique attachée pour émettre de la lumière et récupérer les signaux de fluorescence, ce qui présente un risque de rupture, de contrainte et de blessure potentielle. Ces systèmes sont également encombrants et nécessitent des tensions de fonctionnement élevées. Par conséquent, leur utilité dans les études sur des animaux vivants est limitée. Le but de ce projet est de mettre en place une interface neuronale optique sans fil pour effectuer la détection de fluorescence avec des modèles animaux vivants sans restreindre leurs mouvements ni induire de stress dû au câble. Nous avons conçu un système de biophotométrie par fibre optique sans fil légère et compacte pour une utilisation chronique basée sur un capteur de fluorescence CMOS (Complementary Metal-Oxide- Semiconductor) intégré offrant une sensibilité élevée, une plage dynamique élevée et une consommation d’énergie très faible. Le système de biophotométrie à fibre présenté incorpore tous les aspects d’un système de biophotométrie à fibres englobé dans un sans fil. Les principales contributions de ce travail ont été rapportées dans neuf conférences et trois articles de journaux publiés ou soumis, ainsi que dans une divulgation d’invention. Les mesures de biophotométrie en fluorescence nécessitent un appareil de laboratoire à large plage dynamique (DR) et à haute sensibilité. Cependant, il est souvent très difficile de mesurer avec précision les petites variations de fluorescence en présence de bruit et d’autofluorescence de tissu de fond élevée. Une contribution importante de ce travail concerne le développement de biocapteurs optoélectroniques CMOS intégrés sur mesure et de circuits de traitement permettant de détecter les signaux de fluorescence très faibles et de les convertir en codes numériques de haute précision, afin de construire des dispositifs de détection du cerveau montables sur la tête de souris de laboratoire, très compacts et légers. Nous avons conçu une première puce de biocapteur CMOS haute précision offrant une plage de tension de fonctionnement basse, une basse consommation, une haute sensibilité et une gamme dynamique élevée basée sur une architecture basse tension intégrant un circuit frontal à détection différentielle avec heure [sigma delta] modulation avec un amplificateur de transconductance capacitif différentiel (ATCCD). / Ce nouveau système offre une mise en oeuvre simplifiée ainsi qu’une architecture à faible consommation utilisant une stratégie de partage du matériel. La détection différentielle et les photodiodes factices avec le ATCCD permettent d’atteindre une sensibilité élevée en supprimant les dark current de la photodiode, en utilisant un petit condensateur d’intégration dans le ATCCD. Les résultats de mesure sont présentés pour le capteur de biophotométrie proposé, fabriqué avec une technologie CMOS de 0.18 mm, consommant 41 mWd’une tension d’alimentation de 1.8 V, tout en atteignant une gamme dynamique maximale de 86 dB, une bande passante de 50 Hz, une sensibilité de 24 mV/nW et un courant minimum détectable de 2.6-pArms à un taux d’échantillonnage de 20 kS/s. Un autre défi critique pour un système de photométrie à fibre pour petits animaux concerne la gestion de la consommation de courant importante nécessaire à la source de lumière d’excitation pour fournir une puissance de sortie de lumière suffisante au tissu afin de déclencher la fluorescence. Par conséquent, des impulsions lumineuses d’excitation courtes doivent être utilisées par rapport à la période d’échantillonnage du signal de fluorescence (>10 ms), afin de réduire la consommation de courant moyenne et d’allonger la durée de vie de la batterie. Pour répondre à cette exigence critique, nous avons amélioré notre conception avec un deuxième prototype de biocapteur utilisant de nouvelles techniques de circuit pour offrir une sensibilité élevée et une plage dynamique élevée avec un temps de conversion réduit permettant l’utilisation d’impulsions lumineuses à cycle de fonctionnement réduit et de consommation faible. Le biocapteur est basé sur un convertisseur analogique-numérique (CAN) à comptage étendu, et un convertisseur analogique-numérique de premier ordre SD, dont le fonctionnement est synchronisé avec les impulsions lumineuses d’excitation. Le biocapteur présente une gamme dynamique de 104 dB à un temps de conversion de 3 % de la période d’échantillonnage du signal de fluorescence et réduit la consommation électrique de la DEL de 97 %. Un dernier aspect critique concerne la flexibilité du biocapteur pour effectuer des tests fiables in vivo. Réaliser un test pratique in vivo nécessite d’ajuster la sensibilité du biocapteur et la puissance de sortie de la DEL du biocapteur afin de s’adapter à différents niveaux de fluorescence et différents environnements physiologiques à l’intérieur des tissus de l’animal vivant. Ainsi, nous avons conçu un troisième biocapteur incorporant une sensibilité et un temps de conversion programmables afin d’optimiser la consommation d’énergie de DEL et de permettre un très faible facteur de fonctionnement excitation/détection. Cette toute nouvelle architecture de capteurs utilise un CAN à temps discret [sigma delta] avec une technique de double échantillonnage numérique corrélée permettant la détection de photocourants inférieurs à 1 pArms. Cette conception a été utilisée comme module de base pour développer un prototype de headstage sans fil. Nous avons mis en place et testé in vitro avec succès ce système de biophotométrie à fibre, qui comprend la puce de biocapteur proposée, avec une tranche de cerveau de souris exprimant GCaMP6, un indicateur de calcium génétiquement codé. / Fiber biophotometry is a powerful technique in neuroscience to monitor the dynamic fluctuations in calcium levels correlated with neural events, such as action potential generation, exocytosis of neurotransmitters, changes in synaptic plasticity, and gene transcription in deep brain structures in live laboratory animals. This approach allows studying the correlation between neuronal processes and the behavior of live animal models in order to learn more about the brain function and its associated diseases. Conventional bench-top fiber biophotometry apparatus use a tethered optical fiber to deliver light and to retrieve fluorescence signals, which involves risk of breakage, stress, and potential injury. These systems are also bulky and require high operating voltages. Therefore, their usefulness to conduct studies with live animals is limited. The goal of this project is to implement a wireless optical neural interface to perform fluorescence sensing with live animal models without restraining their movement or inducing stress due to cable tethering. We designed a lightweight and compact size wireless fiber biophotometry headstage for chronic utilization based on a custom integrated Complementary Metal-Oxide-Semiconductor (CMOS) fluorescence sensor providing high-sensitivity, high-dynamic range, and very low-power consumption. The presented head-mountable fiber biophotometry system incorporates all aspects of a conventional tethered fiber-based biophotometry system encompassed into a wireless headstage. The main contributions of this work were reported in nine conferences and three journal papers published or submitted, and in one invention disclosure. Fluorescence biophotometry measurements require wide dynamic range (DR) and high-sensitivity laboratory apparatus. But, it is often very challenging to accurately resolve the small fluorescence variations in presence of noise and high background tissue autofluorescence. An important contribution of this work concerns the development of custom integrated CMOS optoelectronic biosensors and processing circuits to detect very weak fluorescence signals, and to convert them into high-precision digital codes, for building very compact and lightweight head-mountable brain sensing devices for laboratory mice. We first designed a high-precision CMOS biosensor chip providing low operating voltage, low-power, high-sensitivity, and high-dynamic range based on a low-voltage architecture that embeds a differential sensing front-end circuitry with a continuous-time [sigma delta] modulation with a differential capacitive transconductance amplifier (DCTIA). This novel system offers a simplified implementation as well as a low-power architecture leveraging a hardware sharing strategy. Differential sensing and dummy photodiodes with the DCTIA enables to achieve high-sensitivity by suppressing the photodiode dark currents and using a small integration capacitor in the DCTIA. Measurement results are presented for the proposed biophotometry sensor fabricated in a 0.18-mm CMOS technology, consuming 41 mW from a 1.8-V supply voltage, while achieving a peak dynamic range of 86 dB over a 50-Hz input bandwidth, a sensitivity of 24 mV/nW and a minimum detectable current of 2.46-pArms at a 20-kS/s sampling rate. / Another critical challenge for a head-mountable fiber photometry system is when handling the large current consumption needed for the excitation light source to provide sufficient light output power to the tissue in order to trigger fluorescence. Hence, short excitation light pulses must be used, relative to the sampling period of the fluorescence signal (>10 ms), in order to decrease the average current consumption, and extend the battery lifetime. To address this critical requirement, we improved our design with a second biosensor prototype using novel circuit techniques to provide high-sensitivity and a high-dynamic range with a short conversion time to allow the utilization of low-duty cycle light pulses and low-power consumption. The biosensor is based on an extended counting ADC, first-order [sigma delta] and single slope ADC, whose operation is synchronized with the excitation light pulses. The biosensor presents a high-dynamic range of 104 dB at a conversion time of 3 % of the fluorescence signal sampling period and decreases the power consumption of the excitation light source by 97%. A last critical aspect concerns the flexibility of the biosensor to perform reliable tests in-vivo. Performing a practical test in-vivo requires to adjust the biosensor sensitivity and the excitation light source output power of the biosensor to adapt to different fluorescence levels and different physiological environments inside the live animal tissues. Thus, we designed a third biosensor incorporating a programmable sensitivity and a programmable conversion time to optimize the excitation light power consumption, and to enable very low excitation/sensing duty cycle. This completely new sensor architecture utilizes a discrete time SD ADC with digital correlated double sampling technique enabling detection of low photocurrents as low as 1 pArms. This design was used as a core module to develop a wireless head-mountable optical headstage prototype. We have implemented and sucessfully tested this fiber photometry headstage, which includes the proposed biosensor chip, in-vitro with a mouse brain slice expressing GCaMP6, a genetically encoded calcium indicator.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/34515
Date23 April 2019
CreatorsNoormohammadi Khiarak, Mehdi
ContributorsGosselin, Benoit, De Koninck, Yves
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xxiii, 110 pages pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0036 seconds